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GENERAL INTRODUCTION 

Non-Destructive Evaluation (NDE) techniques are used for detecting flaws and service-

induced damage, for obtaining object dimensions, and for characterizing materials. In 

response to the ever increasing importance of composite materials in industry, NDE 

methods have been employed as critical tools for characterizing and evaluating these 

advanced materials. Composite materials are those materials that meet the following 

three criteria: they contain two or more distinct constituents that can be physically or 

visibly distinguished; they are synthesized in such a way that the form, distribution and 

amounts of constituents are controlled in a predetermined way; and they have unique, 

useful and superior performance characteristics that can be predicted from the proper­

ties, and from the amounts and arrangements of constituents on the basis of principles 

of mechanics. Compared to conventional engineering materials, composites can be de­

signed to produce exceptional strength and stiffness with minimum weight, making them 

attractive for traditional and advanced applications. 

Although many NDE methods are available for the inspection of composite materials, 

no single method can produce sufficiently reliable results to satisfy the requirements of 

safety and quality control, owing to the complexity of the material. This thesis is focused 

on two important aspects of the study of the composite materials: the characterization 

of the interface bonding in layered composites and the evaluation of the elastic material 

properties in air-coupled experiments. 

The characterization of the condition of the interface bonding in a layered composite 

is critical to understanding the behavior of the material under various stress situations. 
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A closed disbond, alternatively known as zero-volume disbond or "kissing-disbond", 

resulting from compressive stresses at the interface, poses a problem of detection by 

conventional normal-incidence ultrasonic NDE methods. Such an undetected defect 

may be dangerous because it can produce a significant decrease in structural integrity or 

even lead to a catastrophic failure under certain loading conditions. The first chapter of 

this dissertation presents an experimental and theoretical study of the bonding condition 

in a bi-layered composite of woven glass-epoxy/balsa employed by the marine industry. 

Accurate and effective evaluation of a material's elastic stiffness is important in the 

structural integrity, aging, and distributed flaw detection in composites. The require­

ment for partial or complete evaluation of the elastic material properties of composites 

was the motivation for the second part of this thesis, leading to the improvement of an 

air-coupled inspection system. The characterization of the experimental system and the 

description of the theoretical transducer model are presented in detail in this thesis. A 

rapid, non-contact method of reconstructing the elastic properties of a composite plate 

has been designed and studied theoretically and experimentally. 

Study of the bondlines in marine composites 

The influence of the elastic stiffness and the boundary conditions upon the propa­

gating guided waves in plates is well known, and it has been exploited as a valuable 

tool in many ultrasonic NDE applications [19]. Even though the study of the disper­

sion curves and attenuation of the Rayleigh-Lamb waves is well established, only few 

attempts have been made to exploit these characteristics in producing scans of the in­

ternal defects, discontinuities, and interfacial disbonding [21], [74], [10], [84], [72], [86]. 

Important results in the detection of various internal defects in multilayered composite 

plates were obtained [9], [56] by scanning the specimen for one or more known propagat­

ing Lamb modes. By use of frequency-modulated excitation, small near-surface defects 

were detected, with good sensitivity in honeycomb composite facesheets [20]. 
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The focus of our study has been the development of an NDE tool for the reliable 

detection of the "kissing-disbond" in marine composites. The method takes advantage 

of the results previously mentioned and consists of a C-scan using a carefully chosen 

Rayleigh-Lamb wave mode sensitive to the condition of the interface between the two 

layers of the specimen. A good bond produces continuity of both the compressive and 

shear stresses, whereas a closed disbond transmits only partially the shear stress across 

the glass-epoxy/balsa interface. After experimental identification of the guided wave 

mode most sensitive to the changes within the interface conditions in the bandwidth 

of the system, a pitch-catch reflection setup is exploited to produce a C-scan of the 

bondline. The separation distance between the acoustical axes of the transducers is set 

to a value approximatively the size of the radius of the probes. In this situation the 

minima in the received voltage and in the plane-wave reflection coefficient are nearly 

identical over a wide range of frequencies [62]. For comparison between the experiment 

and prediction, a model calculation has been extended to simulate the received voltage 

for various bond conditions in the same geometrical setup as the measurement. Several 

artificially created "kissing-disbonds" have been investigated with this technique. 

Characterization of the non-contact electrostatic transducers 

The dependence of the propagating guided wave modes on the viscoelastic stiffness 

of a medium has been used extensively for material characterization. Although this 

approach is well established in the water immersion measurements, it is only in recent 

years, owing to advances in technology, that non-contact experiments have become a 

realistic possibility. 

The transducers current ly available for air-coupled measurements can be divided into 

two main categories: piezoelectric and electrostatic. Perhaps the single most often used 

type of ultrasonic probes in NDE applications are the piezoelectric transducers. Their 

robustness, wide availability, and variety in characteristics and performance make them 
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attractive in conventional measurements. In spite of this, the use of piezoelectric trans­

ducers in non-contact experiments is somewhat limited by their low efficiency in pro­

ducing or detecting acoustic waves in air and by their narrow-band spectra. To increase 

the generation/detection efficiency and to improve the acoustic impedance mismatch 

between the piezo-ceramic and air, impedance matching layers have been employed with 

good results by Gudra et al. [40]. The air-coupled experiments have been improved 

significantly by the development of the electrostatic transducers by Kuhl et al. [55] 

and their subsequently application by Luukkala et al. [68] in the reconstruction of the 

transmission coefficient. Efficient broadband generation and detection of acoustic waves 

in air have been made possible by Schindel et al. [90] and by Hutchins et al. [50] who 

introduced an air-coupled micromachined capacitive film transducer. 

The transducers employed in the present study are planar micromachined capacitive 

foil probes. For the metalized dielectric film, Mylar with an aluminum layer has been 

selected because of its high dielectric strength and low mass. To achieve a tight focus in 

air, an acoustic mirror has been designed. The pressure field of the planar transducer 

and focused probe has been measured experimentally and compared with the predicted 

value. An important development was realized by Lobkis and Chimenti [62], [65], [26], 

who demonstrated the equivalence of Gaussian and piston ultrasonic transducer voltages. 

Even though the field of a piston transducer does not have a Gaussian shape, Gaussian 

beams can replace the combined piston directivity functions without loss of accuracy in 

the calculation of the received voltage. Another critical step was taken by Deschamps 

[30], who introduced the complex source point as a mathematical artifice to model 

a Gaussian beam. When a point source is translated from the real plane into the 

complex plane, its field in the real plane has a nearly Gaussian shape. Zeroug et al. [99] 

applied the Deschamps artifice to model acoustic beams. This idea is significant to the 

development of our model, allowing the replacement of the Gaussian transmitter with 

a complex transducer point (CTP) and using the reciprocity theorem of Au Id [8] and 
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Kino [53] to replace the finite Gaussian receiver with a complex point receiver. 

The directivity profile of the planar capacitive foil transducers, with and without 

reflective focusing devices, has been measured experimentally. For comparison, a theo­

retical model has been used for prediction of the received voltage. 

Reconstruction of infinite plate dispersion spectra by use of focused air-

coupled ultrasound 

Materials characterization experiments, once performed exclusively in water immer­

sion, because of the good energy coupling and the wide availability of broadband, highly 

focused transducers, are now also possible in an air-coupled setting as the result of de­

velopment of more efficient capacitive foil transducers. An important development was 

the introduction by Safaeinilli et al. [88], [89] of a synthetic aperture scanning technique 

in air as a method to suppress interference by extrinsic factors and to estimate the vis-

coelastic stiffness in plates. Lobkis et al [62] studied theoretically and experimentally 

the influence of the transducer's beam and geometry on the received voltage. A method 

for rapid reconstruction of the transmission and reflection coefficients with a broadband, 

wide angular range, synthetic-aperture line scans performed in water immersion has been 

demonstrated by Fei and Chimenti [31] and Fei et al. [32], [34]. The separation of the 

extrinsic contributions of different geometric elements such as transducer size, location, 

and focal length from intrinsic material properties in the received voltage expression 

has been shown by Lobkis et al. [63], [64]. Another critical contribution was made by 

Rohklin and Chimenti [84], who demonstrated that specific areas of the guided wave 

modes of a plate have their predominant influence on different elastic stiffnesses. 

We show that by exploiting the broadband large angular range of our custom probes 

in an air-coupled transmission experiment, many guided wave modes can be successfully 

reconstructed by performing only one line scan with a fixed incident angle [44], [45]. 

A pulse compression technique and a fast data acquisition and processing system have 
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been exploited in order to increase the signal-to-noise ratio and to produce an excel­

lent discrimination between the extrinsic and intrinsic contributions in the signal. The 

focused probe has been manufactured from a planar capacitive foil transducer and a re­

flective stereolithographic parabolic mirror. The design of the acoustic mirror has made 

possible an angular range in air of approximative^ 16° for the ultrasonic beam. The 

focusing and the impedance mismatch between the air and the samples have been ex­

ploited to produce the required wide angular range of the phase-match angles necessary 

for rapid reconstruction of the guided wave modes. Several types of materials have been 

investigated and the results compared with the numerical prediction obtained with the 

received transducer model. 

Dissertation organization 

This dissertation consists of three main chapters, preceded by this general introduc­

tion and followed by a general conclusion and two appendices. The three topics already 

discussed form the three main chapters of the thesis, related by the common theme 

of ultrasonic guided wave propagation in elastic media and application in the NDE of 

composite materials. 

The first chapter presents an application of the ultrasonic guided wave propagat­

ing in a bi-layered composite woven glass-epoxy/balsa plate for the experimental and 

theoretical study of the bonding condition that exists between the two layers. Original 

experiment results of detecting "kissing-disbonds" are reported and compared to the 

analysis. 

The second chapter shows analysis and measurements of the directivity profile of 

planar and focused air-coupled probes. An acoustic mirror has been designed and em­

ployed, along with the planar capacitive foil transducer, for broadband wide angular 

range ultrasonic measurements in air. A received voltage transducer model has been 

used for analysis and explained in detail. 
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The third chapter deals with evaluation of the elastic material properties in air-

coupled ultrasonic experiments. The rapid non-contact reconstructions of the guided 

wave dispersion spectra are shown for various types of materials. The received voltage 

transducer model is applied to the air-coupled transmission geometry for comparison 

with the experiment. 

Additional results are included in the appendices. Appendix A presents the formal 

solution of the reflection coefficient in several experimental configurations. Numerical 

calculations of the reflection spectra for different bonding conditions are also included 

and analyzed. Appendix B provides additional information needed to use the computer 

programs employed to produce the theoretical calculations. 
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CHAPTER 1 STUDY OF BONDLINES IN MARINE 

COMPOSITE 

Introduction and basic concepts 

Technological advances often are accompanied by increased materials demands, reach­

ing for ever-higher standards of strength, durability, and performance, together with 

lower cost. The complex structure of advanced materials and the higher quality re­

quirements make the task of determining structural integrity or evaluating mechanical 

properties more difficult than with traditional materials. An example of such an ad­

vanced material is a composite structure commonly known as marine composite, man­

ufactured by Baltek Corporation. This composite consists of one or more glass-epoxy 

woven facesheets cured on top of pressure-bonded balsa wood plate of various thicknesses. 

Owing partially to compressive stresses at the interface between glass-epoxy facesheet 

and balsa/foam core, it is difficult to detect a closed disbond ( "kissing-disbond", KDB) 

by conventional normal-incidence ultrasonic NDE techniques. The shape and the loca­

tion of the KDB defect, alternatively called a zero-volume disbond, makes it potentially 

dangerous because it can drastically reduce mechanical properties of the structure un­

der some kinds of loading. This is especially true for a composite with art undetected 

KDB incorporated into a structure in which the stresses will eventually increase the size 

of the discontinuity, producing a possibly catastrophic failure or at least a significant 

decrease in structural integrity. The study presented here is motivated by the failure 

of convent ional techniques either to detect KDB or to monitor their dynamics, even for 
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large, artificially induced discontinuities with a known size and location. 

The method for detecting KDB in marine composites consists of incorporating care-

fully chosen propagating plate waves to reveal the presence of a disbond beneath the 

glass-epoxy layer. The sensitivity of a propagating Lamb wave to the boundary condi­

tions is exploited to detect differences in mechanical shear coupling at the interface. A 

good bond will produce continuity of compressive and shear stresses, but a closed dis­

bond will only partially transmit the shear stress across the glass-epoxy/core interface. 

In pitch-catch ultrasonic measurements, the difference in the received voltage between 

the two cases, good bond and disbond, is unequivocal and can be used to identify those 

areas with the KDB when a C-scan is performed in an immersion test. This method 

will be fully explained later in this section. 

Although many other investigators have tried to exploit the Lamb wave propagation 

characteristics such as dispersion curves and attenuation, as Chimenti extensively listed 

in a recent review [19], only a few, which are cited here, have attempted to capitalize 

on these characteristics and produce scans of internal discontinuities or interfaces using 

the leaky Lamb wave reflected or transmitted spectra. Notable efforts were made by 

Chimenti and Martin [20] to detect with good sensitivity small near-surface defects in 

honeycomb composite facesheets, using frequency modulated excitation, and by Bar-

Cohen et al. [9] and Kundu et al. [56], [69] to inspect multilayered composite and 

produce a C-scan of the different internal defects by scanning the specimen for one or 

more Lamb modes (also known as L-scan). Dayal and Kinra [27] showed that information 

about matrix cracking can be obtained from reduction of in plane stiffness using the 

leaky Lamb wave method. Also, it is important to note that the work of Chimenti [21], 

Nayfeh [74], Bar-Cohen [10], Rokhlin [84], Nagy [72], Rose [86] and others prove that 

the Lamb wave propagation characteristics (dispersion curves, phase and group velocities 

and attenuation) are influenced by material discontinuities and boundary conditions. 

The method developed here takes advantage of the previously mentioned results to 
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produce a reliable tool for investigating KDB in marine composites. Because of the 

known properties of the facesheet, we can choose a specific Lamb mode that is sensitive 

to changes at the interface between the facesheet and the core. A propagating Lamb 

mode defined by its frequency / and wavenumber k can be identified within the specific 

bandwidth of the transducers by choosing the incident angle of the incoming plane 

wave according to 6 = sin™1 (k/kf ), with kf being the wavenumber in the surrounding 

fluid. To excite a Lamb wave in the composite, a pitch-catch geometry is used with 

both transmitter and receiver on the same side of the sample. The separation distance 

between the acoustical axis of transmitter and receiver is set to be approximatively 

the radius of the probes. The value for this distance is drawn from [62], in which it 

was shown that for this distance the closest correspondence of the voltage minimum 

with reflection coefficient zeroes occurs over a wide range of frequencies. Of course, the 

transducers produce a finite beam and not an infinite plane wave, but their pressure field 

can be expressed as an infinite series of plane waves. The transducer's ultrasonic pressure 

field is considered to arise from a superposition of elementary point sources producing 

spherical waves and located on the face of the transducer. If either Brekhovskikh's [16] 

or Weyl's expansion of a spherical wave into plane waves is used and the integrations 

over the aperture of both transmitter and receiver are performed, then the probes' 

ultrasonic field can be written in terms of a spectrum of plane waves. The influence of 

the sample over the received voltage is given by the plane-wave reflection coefficient for 

each individual incident plane wave from the expansion. Because numerical evaluation 

of this model is complicated, a computationally more efficient method is used instead 

to model the received voltage for the geometrical setup used here. This model, known 

as the complex transducer point [99], replaces the transmitter and receiver with a point 

source and point receiver with their real space location displaced into the complex plane. 

The complex transducer point is extensively explained in chapter 2. The leaky Lamb 

mode, which is sensitive to the KDB, can be found either theoretically, by modeling 
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the reflected spectra corresponding to different interface conditions, or experimentally. 

The latter can be achieved by comparing the signal for a known good bond to that 

of a disbonded facesheet, both in the pitch-catch arrangement described above. The 

goal is to find the angle that produces a Lamb wave only for the disbonded glass-epoxy 

facesheet. After this angle is identified and selected, the geometry setup is kept constant 

throughout the experiment to provide high sensitivity to changes of bond conditions and 

to produce the C-scan of the composite. 

Model development 

In this section the influence of the glass-epoxy/balsa wood interface on the received 

voltage is studied for different interface conditions: good bond, partial bond, open dis­

bond, and KDB. In the case of a good bond, the facesheet is considered to be fluid 

loaded and to have a welded contact to the balsa core. For an open disbond, the glass-

epoxy plate has the upper interface water-loaded and the lower boundary traction-free. 

The cases for which the lower interface has a smooth contact with the balsa or partial 

transmission of shear stress, corresponding to a rough surface, are used to model the 

KDB. The bond condition between the glass-epoxy layer and balsa wood is accounted 

for with the help of a simple stress-jump model, according to the expression developed 

in Appendix A. The numerical evaluation of the received voltage transducer model, 

for these various bond conditions, is presented. In the numerical evaluation of the re­

ceived voltage, the balsa wood is considered a half space, because of its large thickness 

and acoustical damping compared to the glass-epoxy facesheet. A comparison of the 

predicted and measured received voltages is shown later in this chapter. 
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Elastic waves in a halfspace 

Following the method of Nayfeh [73], which is explained in more detail in Appendix A, 

the expression of the amplitude of the displacements and stresses for a wave propagating 

in an elastic medium is given by 

6 

(%, %2, «3) = %](!, (1.1) 
g=1 

6 

^33,^3,^) = (1.2) 
9=1 

for a solid medium and for a fluid 

2 

(%, (W/ - (1.3) 
9=1 

where kx is the x,\-component of the wavenumber, c is the phase velocity c = ui/kx along 

xi, w is the circular frequency, a is the unknown ratio of the wavenumber components 

along the x3- and x-i -axis and U\q is the displacement amplitude on a^-axis. The ampli­

tudes Vq, Wq of the displacements and Diq of the stresses with i = 1,2,3 can be found 

in Appendix A. 

Applying these equations for the case of incidence and reflection in the fluid for a 

solid half space would provide the complete description of the reflected and transmitted 

waves, as shown in fig. 1.1. Even though the composite is a layered plate, because of the 

large thickness of the balsa wood compared with the thickness of the facesheet and the 

orientation of the wood grains perpendicular to the interface, practically, the composite 

behaves as layered half-space. The reflection of the acoustic waves from the bottom 

surface of the balsa layer can be neglected because the contribution is insignificant 

experimentally. We will show later in this section that the expression of the reflection 

coefficient for the marine composite has a form similar to that of a half-space, but 

with mixed contributions from terms particular to the waves propagating into the balsa 

half-space and glass-epoxy facesheet. 
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Formal solutions for the displacement and stresses appropriate for this case are those 

given above with the convention that the overbar will be used to designate the fluid 

and that the superscripts (T) and (R) will be used for transmitted and reflected waves, 

respectively. By choosing the incident wave amplitude Of- as unity, we can identify 

the reflected amplitude f/f with the reflection coefficient R and amplitudes in the solid 

medium [/£, Uf3 and UjB with the transmission coefficients Ti, T> and T3, respectively. 

Boundary conditions require the continuity of the normal displacements and stresses 

(«3 = uj and (T33 = (jgg) at x3 = 0. Furthermore, for an inviscid fluid, <rf3 and <j£3 at the 

interface are equal to zero. Applying these boundary conditions to the displacements 

and stresses we can solve for the reflection coefficient. Upon solving that equation, we 

obtain the following expression [36], [54], [75], [22] 

-tsf 
where 

A„ = DnGi — -D13G3 + -D15G5 

y = (W1G1 -1% + W5G5) 

Gi = D23D35 — D33D25 

G 3 = D21 — -D31-D25 

G5 = D21-D33 — D31D23. 

The vanishing of the denominator of the reflection coefficient defines the characteristic 

equation for the propagation of the fluid-modified surface waves on the substrate A,, + 

Y = 0. In the absence of the fluid (p/ = 0 or Y =0) this reduces to A„ — 0. This 

latter equation is known as the Rayleigh wave equation and defines the propagation of 

the surface wave along the interface of an elastic semi-infinite medium [1]. 

(1-4) 

(1.5) 
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a a • a s e • 

Transmitted 

Figure 1.1 Scattering from a fluid-solid half space interface. The incident, 
reflected, and transmitted plane waves are contained in the plane 
(I'l , X:i) with the x\ direction pointing along the interface and the 
x3 axis perpendicular to the half space. 

Elastic waves in plates 

The formal solutions (1.1) - (1.3) are now applied for the case of a plate completely 

immersed in an inviscid fluid, as illustrated in fig. 1.2. Boundary conditions for this 

case require continuity of the normal displacement and stress for both upper and lower 

interface (a% = ±d/2) between plate and fluids. In addition, for inviscid fluids the cr13 

and (728 of the solid plate will vanish. The equations obtained for this case can be solved 

by use of Cramer's rule for the reflected and transmitted coefficients and also for the 

amplitudes of the displacement U\q with q — 1..6. By this means, the expression for the 

reflection coefficient for the case of a completely immersed plate in a fluid is found to 

be, as shown by others [10], [22], [24], [27], 

R 
(#-%y)(A-Hy)' 

(1-6) 
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where 

S — DiiGi cot(jai) — D13G3 cot (70^3) + D15G5 cot(7015) 

A = DnG\ tan(7a1) — D\3Gz 13x1(70:3) + -D15G5 tan^Ofs), (1.7) 

with 7 given by [76] 

7 = k x d j  2 = ud/2c. 

A detailed derivation of the terms involved in the expression of the reflection coefficient 

can be found in Appendix A. 

Elastic waves in a plate/solid substrate system 

For the case in which the plate is fluid loaded at the top boundary and in contact 

with a bottom substrate, the boundary conditions allow us, as in the previous cases, 

to obtain the expression of the reflection coefficient. The reflection coefficient from a 

plate/substrate system shown in equation (1.8) is derived in a form similar to the one 

given in equation (1.4). The difference in the expression of the reflection coefficient 

comes from the fact that the contributions of both the plate and the substrate are found 

in every term present in its formula [2], 

The dependence of Aps and Yps on the amplitudes of the displacements and stresses 

in plate and substrate is presented in Appendix A (equations A.32 and A.33). The 

influence of the fluid is manifested in the term Yps only. The characteristic equation for 

the propagation of fluid-modified surface waves in the system of layer and half-space is 

obtained when the denominator of equation (1.8) vanishes ( Aps + Yps = 0). If the fluid is 

absent (Yps — 0, i.e., vacuum), the characteristic equation is reduced to Aps = 0, which 

describes the propagation of a Rayleigh-Lamb wave in the plate/substrate system. 

(1.8) 
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fluid 

solid 
d/2 

fluid 

Figure 1.2 Scattering from a fluid loaded plate in total immersion. The %\ 
axis is parallel to the interfaces and located in the mid-plane of 
the plate. The thickness of the plate is d and the same fluid is 
considered for both top and bottom interfaces. 

fluid 
-d/2 

Plate 

d/2 Substrate 

Figure 1.3 Scattering from a fluid loaded plate/solid substrate system. The 
X\ axis is parallel to the interfaces and located in the mid-plane 
of the plate. The thickness of the plate is d. 
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Different interface conditions, such as welded contact or a smooth interface, are 

shown, in the next section, to influence the reflection coefficient and the received voltage. 

The difference in the received voltage is found to be more significant for specific guided 

wave modes. A careful selection of one of these modes will assure experimentally an 

unequivocal indication for the presence of a KDB. 

Numerical evaluation of the received voltage for a pitch-catch reflection 

setup - Received Voltage Transducer model 

As mentioned in the introduction, for numerical evaluation of the generated volt­

age, the complex transducer point (CTP) model is employed. In this section a brief 

description of the model's parameters is presented, and theoretical results are shown for 

different interface conditions. The model is exploited here without going into further 

details; its complete explanation can be found in the next chapter. 

The CTP model replaces a pair of Gaussian beams with point sources located in the 

complex plane [99]. The operation of replacing the finite Gaussian transmitter with a 

point source simplifies the expression of the voltage sampled at any arbitrary location. 

The acoustic field produced by the complex source point projected in the real space 

accurately models a finite, quasi-Gaussian source. Furthermore, in the case of a finite 

Gaussian receiver, integration over the surface of the receiver is also needed to calculate 

the voltage. By use of the reciprocity theorem of Auld [8] and Kino [53] that implies 

source-detector exchange, the finite receiver can be replaced with a complex point re­

ceiver as well. When both the transmitter and receiver are complex point transducers, 

Zeroug et al. [99] showed that the received voltage is given directly by the spherical 

waves expression = C(e'^/47rTZ.) (equation (3.2)). The coefficient C depends on 

the frequency, the surrounding fluid properties and the associated electronics, while 7Z is 

the distance between the point source and the point receiver. When the acoustic field is 

reflected or transmitted through various media it is convenient to use the plane-wave de­



www.manaraa.com

18 

composition of the spherical waves. Zeroug et al. [99] (equation (3.15)) and Lobkis et al. 

[62] (equation (6)), derived a spectral integral representation of the received frequency-

domain voltage whose integrand contains the directivity functions of the transmitter 

and the receiver, and a spectral reflection coefficient that accounts for the acoustic wave 

interaction with the fluid- or air-loaded structure. 

with C a parameter that was mentioned before to depend on associated electronics, 

frequency and fluid properties. In the latter expression, £ can be either the phase match 

angle or the projection of the wavenumber on the fluid-solid interface. The term i?(£) 

represents the reflection coefficient that describes the acoustic wave interaction with 

the fluid-loaded elastic structure. The combined directivity functions, D(Ç), are Bessel 

functions for the piston model, Gaussian beams for Gaussian transducers, or spherical 

waves for CTP model. The reason for using spectral decomposition is that the reflection 

coefficient is conveniently calculated for plane waves. The other terms in the expression 

of the received voltage being easily obtained as functions of plane waves by the use of 

the spherical wave decomposition into a infinite sum of plane waves. 

The voltage will have then a complex amplitude A, which decreases along the acous­

tical axis with the distance from the source, and a Gaussian shape in the axial-symmetry 

direction. The term V is the phase of the voltage, which is unity when the absolute value 

is calculated. The voltage, as shown later, is 

Here, kj is the wavenumber in fluid, z the distance along the axis of the transducer, 

and p the off-axis distance as shown in fig. 1.4. Because of the axial symmetry of the 

transducer, cylindrical coordinates are used in the expression of the voltage rather than 

Cartesian coordinates (z = pcos#, = psin#). The parameter 6, presented in fig. 1.4 

(1.9) 

recv (1.10) 
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as the imaginary coordinate of the complex point source, controls the Fresnel length 

of the transducer. The voltage of a planar 1 MHz transducer with a radius of 10 mm 

is evaluated with the received voltage transducer model in radial direction p and for 

distances along the acoustical axis up to 15 cm from the probe's aperture. In fig. 1.4, 

the dotted lines are the absolute values of the "cross-sectional" voltage evaluated at four 

different separation distances along the acoustical axis (z = 0, 5, 10, and 15 cm). With 

increased distance from the complex point source, the amplitude of the Gaussian profile 

decreases while its waist size increases. 

Figure 1.4 The cylindrical coordinate system for the evaluation of the re­
ceived voltage of a 10 mm radius planar transducer at 1 MHz. 
The absolute value of the voltage is color coded (dark blue repre­
sents the lowest value). The signal is evaluated along the acous­
tical axis z and in the radial direction p. The projection in 
the real space of the acoustic field produced by a point source, 
displaced from the real space into the complex space by the 
length ib shown as a contour plot, accurately models a finite, 
quasi-Gaussian beam. 

0 

For the numerical evaluation of the received voltage we will consider the case of 

a pair of identical planar transducers having the same incident angle a between their 
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acoustical axis and the normal to the sample. The transducer pair is positioned over the 

sample at the same height z0 and in the same plane (x, z), (see fig. 1.5). For simplicity 

we neglect any ^-dependence for both the reflection coefficient and the acoustic beam, 

and the problem is reduced to a two-dimensional one. Because the transducers' beams 

are symmetric with respect of their acoustical axis, and the measurement is performed 

along one of the symmetry axes of the material, in the sagittal plane, the two-dimensional 

problem is a good approximation for the voltage model. 

Figure 1.5 The received voltage geometry. The positions of the two iden­
tical transducers, shown in a pitch-catch reflection setup, are 
displaced in the complex plane to ease the numerical evaluation 
of the voltage. 

The notation kx is adopted for the invariant x-axis projection of the wavenumber, 

and then the z-axis projection is given by kz = y kj — k%. The received voltage is then 

obtained, according to Fei et ai. [32], [34], and Fei and Chimenti [33], from the received 

voltage transducer model as 

Jkx (x-x')—iy/k^-k%(z+z') 1 /* )• 
V ( x , f )  =  ~~m f A T A R  /  R ( k „ f )  

-I V' 
( i n )  

where / is the frequency, pf the fluid density, and 7 a frequency-dependent factor char­

acteristic to the associated transducer's electronics. The terms AT and Ar are the 
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dimensionless strength of the transmitter and the receiver, respectively. The plane wave 

reflection coefficient R(kx, /) represents the sample's influence on the received voltage. 

The transducers have their location in the complex plane at (£', 0, z') for the transmitter 

and (x, 0, z) for the receiver, respectively. The (x, y, z) coordinate system, shown in 

fig. 1.5, has the z-axis perpendicular to the plate with z = 0 on the upper surface of the 

plate, and the z-axis along the sample. The complex position of the transducers is then 

given by 

x' = z0 tan a + a — ib sin a z' = —z0 + *6cos a, 

x — —z0 tan a + ib sin a z = — z0 + ib cos a. 

The parameter b defines the Fresnel length of the transducers and the direction of the 

a x i s y m m e t r i c  G a u s s i a n  b e a m .  T h e  F r e s n e l  l e n g t h  b  c a n  b e  e x p r e s s e d  a s  b  =  W ^ k f / 2 ,  

w h e r e  W o  i s  1 / e  w i d t h  a t  t h e  w a i s t ,  a n d  k f  t h e  w a v e n u m b e r  i n  w a t e r  k /  =  2 i r  f / c f  

(cf =±1480 m/s the speed of sound in distilled water at room temperature [93]). The 

separation between the acoustical axes measured on the sample's surface, along the 

z-direction, is equal to the transducers' radius a. An approximate estimation of the 

beam waist Wo was found by Thompson and Lopes [94] and Lobkis et al. [62] to be 

Wo = 0.752a, with a the transducer's radius. 

The numerical evaluation of the received voltage is found to be performed more easily 

in the wavenumber-frequency domain rather than in the space-frequency domain. In the 

(x, /) space, the integral from equation (1.11) is not well defined for kx = kf and high 

frequencies. If a spatial Fourier transformation is applied to equation (1.11), the voltage, 

now presented in wavenumber-frequency (k, /) space, has the expression 

1 p k f  [6cos(6—o)+6'cos(6—a')] 

I /) 1= gkWTWa | /) | —^ . (1.12) 

The numerical evaluation of the voltage formula in the ( k ,  f  ) domain is less computa­

tionally demanding. The voltage is shown to be the product of the reflection coefficient 
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and an exponential, which depends on the frequency, position, and orientation of the 

transducers. A critical normalization needs to be applied to equation (1.12) for it to be 

valid for arbitrary values of the Fresnel lengths 6 and (/. The amplitudes of both complex 

transducer points are normalized by the exp( — k f b )  and exp( — k f b 1 )  respectively. The 

normalization makes the transducer's field at the aperture unity for all frequencies, but 

leaves the field profile unmodified, 

By use of the latter expression, the voltage is evaluated for the desired frequency band­

width (0-2 MHz) and wavenumber range (0 - 0.5 mm-1). For identical transducers 

with the same incident angle the Fresnel lengths b and b' are equal, and a equals a'. 

In fig. 1.6 is shown the result of the numerical evaluation of the received voltage in 

the (k, f ) domain for a water-loaded glass-epoxy plate with a balsa substrate. The 

spectrum of the received voltage is presented as a color-coded image, with zero am­

plitude corresponding to the dark blue and higher amplitudes corresponding to lighter 

colors. The only non-zero amplitudes of the voltage are located on the line that cor­

responds to the acoustical axis of the transducers, as expected. It can be seen from 

fig. 1.6 that the slope that matches the maximum amplitude can be evaluated as 

0 = sin"1 (&/&/) = sin™1 (Ay///) = sin™1 (0.4 • 1.48/2) = 17.21°, where k = kx is the 

non-angular wavenumber (k = f/v). Because the transducers are planar, their angular 

range is weakly frequency dependent and decreases with the increase of frequency, 

y(&=, /) 1= I #(&=, /) 
çkf {£>[cos(0—a)—1] 4- V [cos( 9—a' )—1]} 

(1.13) 
&/CO80 

2 &/cos# 

^ - w Pi7a tA h 
2 k/cos# 

(1.14) 

For identical transducers, the latter equation simplifies to 

(1.15) 
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as shown by Fei et al. [32]. The beam width AO is determined from equation (1.15) 

as Ad — 1/ y/2kfb = 1/kfW ~ y//1.5047ra/. In the bandwidth 0.5 MHz to 1.5 MHz, 

the angular range of the voltage has an average value of 2°. Therefore, the voltage 

will have a significant value only in the vicinity of the incident angle. This feature 

can be observed in fig. 1.6 to correspond to the oblique light-colored band. The dark 

blue curves, which are seen crossing the light colored band, are the reflection coefficient 

minima. These minima indicate that there exists a propagating guided plate wave for 

the specific frequency-wavenumber combination. Only those reflection minima that are 

visible in the (k,f) plot are accessible for the given bandwidth and geometry conditions. 

The thickness of the glass-epoxy facesheet is 2 mm. The values for stiffness matrix \C]  

that have been used in the numerical evaluations of the reflection coefficient and voltage 

for glass-epoxy facesheet and balsa wood are taken from the United States Department 

of defense composite materials handbook [28] and Forest Service wood handbook [37], 

and are presented in table (1.1). In table (1.2) are shown the model parameters employed 

in the evaluation of the received voltage. The interface between the facesheet and the 

substrate is assumed to possess the continuity only of the normal displacement U33 and 

normal stress <733 in order to simulate the KDB. 

The voltage is evaluated for a frequency bandwidth 0-2 MHz with a step of 4 kHz, 

and a wavenumber range 0 - 0.8 mm™1 with a step size of 1.6-10™3 mm-1. The incident 

angle for both transducers is set to the value 17° to correspond to the experimental 

setup. To obtain the frequency dependence of the voltage for a specific separation 

distance between the transducers, an inverse spatial Fourier transform is performed over 

the y(&, /) voltage. The result of the transformation is the spatial-frequency dependent 

voltage, as shown in fig. 1.7. The absolute value of the spectrum of the received voltage 

is presented in fig. 1.7 as a color-coded image as a function of the separation distance 

between the acoustical axes of the transducers; red represents maxima while dark blue 

corresponds to zero amplitude. The voltage is sampled for all frequencies with a step size 
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Table 1.1 Values of the elastic stiffness of glass-epoxy composite and balsa 
wood 

Stiffness (GPa) 

Material 
Cu Cu Cl3 C22 C23 C33 C44 C55 CôG 

EGlass-epoxy 
p=2.10 g/cm3 

50.64 15.62 5.14 50.64 5.14 13.21 5.52 5.52 17.52 

Balsa wood 
p=0.16 g/cm3 

3.596 0.187 0.313 0.186 0.276 0.566 0.002 0.183 0.126 

Table 1.2 Values of the parameters used in the numerical evaluation of the 
received voltage transducer model 

Received voltage transducer model parameters 

Transducer 
X 

(mm) 
y 

(mm) 
z 

(mm) 
radius 
(mm) 

angle 
(deg.) (MHz) 

Band. (-6dB) 
(kHz) 

Transmitter 430 0 -120 10 17 1 400 

Receiver -420 0 -120 10 17 1 400 
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of 0.1953 mm in both the positive and the negative directions. From this data set the 

frequency dependence for a separation distance equal to the radius of the transducers is 

extracted (fig. 1.8). 

Fig. 1.8 shows several minima in the received voltage, which correspond to propa­

gating Lamb waves in the facesheet. When the frequency bandwidth of the transducers 

is superimposed, the received voltage, presented in fig. 1.9, is shown to detect only one 

propagating Lamb mode. The transducers are considered to have a central frequency of 

1 MHz with a bandwidth of 400 kHz at the -6 dB points. 

In fig. 1.10 is shown the result of numerical evaluation of the received voltage for two 

interface conditions: good bond and KDB. The good bond interface allows continuity 

of all displacements and stresses at the interface. The minimum in the received voltage, 

present only in the case of a KDB, is an unequivocal indication of a propagating Lamb 

wave in the disbonded glass-epoxy facesheet. 

When the simulated signal is compared with the measured voltage for the KDB case, 

good agreement between the voltage minima is obtained. Figure 1.11 shows a comparison 

between the theoretical model and the experiment. The experimental signal, shown as 

a continuous line, is measured for a known KDB. The most important parameter in 

imaging KDB defects is the frequency minimum position. In the two spectra, model and 

experiment, the positions of the minima coincide. The transducers' parameters used in 

the received voltage model are those of the actual transducers used in the experiments, 

to be described. 
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Wavenumber k (mm-1) 

Figure 1.6 The predicted received voltage for a water-loaded 
glass-epoxy/balsa sample evaluated for 500x500 fre-
quency-wavenumber values equally spaced in the range 
/=0 - 2 MHz and k—0 - 0.8 mm-1. 

-80 -60 -40 -20 0 20 40 
Separation distance X (mm) 

Figure 1.7 The predicted received voltage for a water-loaded 
glass-epoxy/balsa sample in the space-frequency domain. 
The result is computed through an inverse spatial Fourier 
transform of the (k, /) voltage. 
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Figure 1.8 The predicted received voltage for a water-loaded 
glass-epoxy/balsa core sample. The separation distance 
between the acoustical axes of the transducers is equal to their 
radius a. The thickness of the facesheet is 2 mm, and the balsa 
is considered to be a half space from z = d/2 to z —> oo. 
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Figure 1.9 The predicted received voltage for a water-loaded 
glass-epoxy/balsa core sample subject to the band limita­
tion of the transducer 
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Figure 1.10 The predicted received voltage for a water-loaded 
glass-epoxy/balsa core sample measured with a pair of 
identical planar transducers. The signal for the case of a good 
bond between the facesheet and core is represented by the 
dotted line; the continuous line represents the KDB case. 
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Figure 1.11 The predicted (dotted curve) and measured voltage (solid 
curve) for a water-loaded glass-epoxy/balsa sample. 
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Experimental technique 

Measurement procedure 

The experimental setup diagram is shown in fig. 1.12. The system is completely 

controlled by an IBM compatible PC running LabView® as the data acquisition soft­

ware, thereby assuring real-time data acquisition and processing as well as easing the 

customization of the measurement procedure. The excitation waveform is computer 

generated for optimal results and uploaded into the memory of a DS345 Stanford Re­

search Systems arbitrary function generator. For a computer generated waveform, the 

maximum sampling rate is 40 MHz. The maximum number of sample points that can 

be stored in the DS345's memory is fixed at 16,300 points. The sampling frequency can 

be changed to any of the values given by: FS = 40 MHz/N, with N = 1, 2,3...234 — 1. 

The vertical resolution is 12 bits, representing 0.025% of the full scale. The harmonic 

distortion produced by the arbitrary function generator is quoted to be less than -35 

dBc. 

The RF amplifier model 50A220 AR Research, which is used to increase the am­

plitude of the excitation to a level appropriate for inspection of a lossy medium, has a 

maximum power output of 75 W and a flatness of ±1 dB for the f < 2 MHz operating 

frequency. The harmonic distortion is less than -20 dBc for a typical 50 W output. To 

prevent unwanted saturation of the amplifier, the input signal is limited to a value of 1 

mW (220 mV for a 50 Q impedance). 

The broadband receiver model BR-640 RITEC has a bandwidth from 100 kHz to 50 

MHz and a maximum gain of 64 dB when it is operating with a 50 il load. The gain 

control is adjusted into steps of 4 dB in the range -12 dB to 64 dB. The output level is 

2 Vpeak—to—peak into a 50 5*2 load. 

The oscilloscope model LT224 LeCroy, which has four channels and a vertical reso­

lution of 16 bits, is used to display and acquire the raw data. Limited data processing 
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can be performed with the scope's math module for quick evaluation arid interpretation. 

The scanning system, a Parker-Daedel scan frame, has the capability to perform 

automatic scans along two axes; in the third axis, manual changes of the position can 

be made. The minimum step size is 0.01 mm for the computer-controlled axis. Two 

rotation stages allow accurate positioning for the transducers' incident angle, with a 

precision of 0.01°. 

Arbitrary Function 
Generator IBM PC 

GPIB 
Card 

LABVIEW RF Amplifier 

Sonix System 

Broadband Receiver 

Motion Control 
System 

Figure 1.12 Experimental setup - Leaky Lamb waves C-scan. 

Both the transmitter and receiver are 1-MHz ULTRAN broadband planar transduc­

ers WS75-1 with an active diameter of 19 mm. The loop sensitivity or the loop gain 

S (dB) = —20 log(Vrecv/Vex) is -36 dB, and the typical S/N ratio is about 40 dB. 

Through the GPIB data bus, the PC controls the arbitrary function generator, the 

scanning system and the data acquisition from the oscilloscope. The excitation signal 

is custom designed with LabView Signal Processing Toolbox and uploaded into the 

arbitrary function generator memory before starting the actual measurements. The 

excitation signal is a frequency sweep (chirp) signal in the range 0.5-2.5 MHz (4,000 
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points, 10 Msamples). The signal is further amplified by the RF amplifier and applied 

to the transmitter. A 20-dB passive attenuator connected at the output of DS345 

replaces the internal attenuator of the function generator in order to improve SNR 

and prevent saturation of the amplifier. The two transducers are placed in a pitch-catch 

arrangement over the specimen, which is immersed in the coupling fluid (water). The 

same experimental geometry could be used for an air-coupled arrangement. 

The separation distance between the acoustical axis of the transmitter and the re­

ceiver is set to be approximatively equal to the radius of the probes. The value for this 

distance is drawn from [62], in which it was shown that for this distance the closest cor­

respondence between the voltage minima on reflection coefficient zeroes and propagating 

Lamb waves occurs over a wide range of frequencies. Transmitter and receiver are both 

fixed to a frame that keeps the distance between them constant during the scanning pro­

cess. In the region where a specular reflection is present, the amplitude of the received 

signal is high enough to produce saturation in the receiver amplifier. For this reason, the 

received signal from the transducer is fed to the input of a RITEC broadband receiver 

through another passive attenuator. The amplified RF signal and its video envelope are 

displayed on the oscilloscope, then digitized and sent to the computer for further data 

processing. A data acquisition LabView "vi" file controls not only the customization 

of the excitation signal, the upload into the arbitrary function generator memory, and 

acquisition of the received waveform from the oscilloscope, but also the position of the 

probes over the sample. The program also produces the desired C-scan. 

Data analysis 

Because the transducers are reciprocal devices and the spectrum of the excitation 

signal used in this measurements is broader than the bandwidth of the probes, the effect 

of the transducers is similar to a window function in the frequency domain. This means 

the bandwidth of the measurement is limited to that of the probes. For the direct or 
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specular reflection, the spectrum of the received waveform should remain unchanged. 

When a leaky Lamb wave is present, its re-radiated field adds coherently to that of the 

specular reflection, and a distortion in the received waveform results because of interfer-

ence. The distortion consists of a lateral shift along the interface in the direction of the 

propagating Lamb wave of the weight center of the reflected beam and the appearance 

of a so-called "null zone", together with a trailing field that decays exponentially as it 

extends along the interface in the direction of the propagating Lamb wave [14]. 

As already cited, for a separation between acoustical axes of the transducers approx­

imative^ equal to their radius, the minima in the received voltage will correspond to 

zeroes of the plane-wave reflection coefficient. When the conditions for efficient mode 

conversion from a compressions! wave in the fluid to a Rayleigh-Lamb wave in the plate 

are met, zeroes or minima will occur in the plane-wave reflection coefficient. The exci­

tation signal is a swept-frequency burst, or chirp with a cosine ramp up and down. The 

envelope of the time-domain waveform and the amplitude of the absolute value of the 

waveform spectrum have basically the same rectangular shape that it is windowed down 

with the cosine ramp. Because of the way the chirp excitation is generated as sinusoidal 

oscillations with linearly decreasing period, the presence of a zero or minimum in the 

received waveform corresponds to an amplitude decrease of a specific frequency in the 

spectrum. The broadband receiver amplifies and captures the video envelope of the RF 

signal. To facilitate data processing and decrease the processing time, the acquisition 

of the video envelope is used instead of the time-domain RF waveform. Because we 

monitor the amplitude of a carefully chosen Lamb mode that is characteristic of the 

glass-epoxy facesheet composite and that does not appear in the cage of a good bond 

to the balsa core, we can enhance defect discrimination by limiting the measurement 

bandwidth to the region of interest. By recording eit her the average value or minimum 

in the frequency window for every position over the sample, an accurate C-scan for the 

KDB condition is achieved. 
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Two approaches can be used to identify the Lamb mode most sensitive to the in­

terface between the glass-epoxy facesheet and the balsa/foam core. The first is based 

on theoretical calculations of the reflection coefficient and received voltage for the case 

of a good bond (i.e., continuity of stresses and displacements at the interface) and an 

open disbond (i.e., continuity of normal stresses and displacements only) between the 

facesheet and core. For a given probe bandwidth, one combination of wavenumber-

frequency corresponding to a Lamb mode present only in the KDB case is chosen. From 

this numerical prediction, the frequency and the incident angle can be calculated from 

8 = sin~l(k/kf) = sin-1(/cv//27r/), where / is the frequency, k the wavenumber, 6 the 

incident angle and Vf the wavespeed in the fluid. The position of the recording time 

window of the measurement system must be consistent with the frequency of the chosen 

guided wave mode. 

The second approach, which is purely experimental, consists of identifying the inci­

dent angle 9 that excites a Lamb mode in the marine composite when the composite has 

a KDB but not otherwise. To detect this angle, an artificially induced defect is necessary 

as a reference. This is a phenomenological process, but shown to provide useful results. 

After following through by use of either one of the approaches the position of both the 

transmitter and receiver, the frequency, the incident angle, and the time window location 

are known. 

In fig. 1.13 is presented the process that transforms the measured raw data into a 

C-scan image of the interface. For each individual (x, y) position in the C-scan the video 

envelope of the received signal is recorded. As noted above, the chirp excitation that 

generated as sinusoidal oscillations with linearly decreasing period is received wit h a zero 

or minimum in the RF waveform when a KDB is present. This decrease in amplitude 

produces an amplitude decrease of a specific: frequency in its spectrum, as shown in 

fig. 1.14. Therefore, the video envelope of the time domain signal and the amplitude of 

the spectrum have similar shape, thus permitting mutual substitution in our analysis. 
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We prefer the usage of the video envelope of the RF signal, which is provided by the 

broadband receiver, over the spectrum to increase data acquisition speed and processing. 

In fig. 1.13 five actual signals recorded from different positions on the scan grid are 

shown. The frequency of the selected Lamb wave mode that is specific to the KDB case 

is positioned close to the center frequency of the probes, as it can be seen for the signals 

corresponding to the positions 2,3, and 4. The received signals at positions 1 and 2 are 

characteristic to a good bond, because of the non-presence of minima in the signals. The 

rectangular box shown in fig. 1.13, for all five signals, represents the gate in which the 

signal was measured. The value measured by use of the gate (i.e., minimum or average 

value; either of them yields similar result) is recorded according to the individual (x, y) 

position in the C-scan. The arrows in fig. 1.13 point to the actual location on the C-scan 

they produced. Red color represents high amplitudes while dark blue low value signals. 

The presence of a circular KDB can then be easily distinguished in the center of the 

C-scan image. 

Sample preparation 

Several types of defective samples were investigated using the technique described 

above. The lack of interfacial bonding, characteristic of the KDB, was simulated in balsa 

core samples by embedding a very thin, 12.5 /.mi. Teflon foil at the interface between 

the composite facesheet and core before the sample was cured. The Teflon foil prevents 

bonding between the facesheet and core. This type of close contact between the foil and 

both facesheet and core will allow transmission of the compressional stresses, but not of 

shear waves. An example of such a sample is shown in fig. 1.15, with the defect visually 

detectable. 

In the case of a foam core sample (AIREX R82 manufactured by BALTEK Corpora­

tion), shown in fig. 1.16, the KDB is produced by drilling a hole from the bottom to the 

facesheet/foam interface and polishing the glass-epoxy composite to obtain a smooth 
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(%4,y4) 

Figure 1.13 LLW C-Scan process. For discrete position on the scanning 
grid, the value of the voltage minimum is recorded and plotted 
as a function of the (x, y) position. The C-scan image represents 
the variation of this minimum over the scanning area. 
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Figure 1.14 Typical excitation signal. The RF received signal in the pres­
ence of a KDB is shown in the bottom graph while its spectrum 
is shown in the top graph. The chirp excitation is generated 
as sinusoidal oscillations with linearly decreasing period, the 
presence of a zero or minimum in the RF waveform, which re­
veals a KDB, corresponds to an amplitude decrease of a specific 
frequency in the spectrum. 
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interface. Another cylindrical foam shape is then added, such that the facesheet is in 

contact with the added foam, but without bonding between them. The thickness of the 

foam core is 4 inches, four times larger than the balsa. The dimensions of the foam core 

specimen are 5 feet in length and 2 feet in width. Damage from shipping and handling 

as well as packing residues were visible on the glass-epoxy facesheet. 

Even though these defects are close to real disbonds, they all fail to emulate all the 

characteristics of a "true" KDB because of the way they are fabricated. Therefore, a 

process that produces a "true" KDB has been sought. We have devised a new scheme 

to produce authentic KDB samples from the GFP balsa-core composites. If we load a 

balsa-core sample quasistatically, a "true" KDB can be produced. The method consists 

of applying increasing pressure, from 0 to 400 psi, with a hydraulic ram over one side of 

the marine composite, slowly, over a period of two to three minutes. In a relatively short 

period of time, the adhesive bond between the glass-epoxy facesheet and balsa core will 

begin to fracture on the surface opposite to the one where the stress is applied, leaving 

a KDB. The ram depicted in fig. 1.17 is a two-stage hydraulic hand pump manufactured 

by OTC (manufacturer part no. 4016). The first stage provides high oil volume, 2.6 in3 

per stroke, for rapid ram approach. At 300 psi, the ram automatically switches to the 

high-pressure, low-volume stage, 0.16 in3 per stroke, for high-stress applications. The 

pressure at which disbonding begins is established; then, dwelling at that stress level 

for 30 seconds or so, allows the cracking to proceed to a delamination with contact (i.e., 

KDB). The growth of the crack is accompanied by a distinct acoustic emission signal, the 

level of which is used phenomenologically to decide the appropriate stress settings. The 

optimum level of the pressure for which the KDB develops was found experimentally 

to be 400 psi for the balsa core samples. The arrangement for the fabrication of the 

"true" KDB is shown in fig. 1.17. The region of disbonding is controlled by time under 

stress, rather than the stress level itself. The result is a near picture-perfect KDB that 

is visually detectable because of the semitransparent nature of the glass-epoxy layer. 
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A photograph of a sample with a discontinuity fabricated in the fashion just described 

is shown in fig. 1.18. The KDB area is of a lighter shade and is located in the center 

of the sample. The circle shows the position of the piston on the opposite side of the 

sample. The grid, present on the sample, is 0.5 in. For comparison, a United States 

quarter is placed on top of the sample (24.3 mm diameter). The shape of the KDB 

is irregular, but close to a circular shape. The approximate diameter of the KDB is 3 

inches (76.2 mm). The result of our sample fabrication process is a "true" KDB that 

is virtually undetectable in any conventional normal incidence stress-wave testing, in 

which only low-amplitude normal forces are applied, or by tap testing [25]. 

Conventional ultrasonic scanning or normal incidence measurements show virtually 

no difference between the bonded and disbonded locations. In fig. 1.19 is presented 

the results of a conventional normal incidence C-scan performed on a bi-layered Eglass-

epoxy/balsa composite for detection of a open disbond. The disbond is created by impact 

with minimal damage caused to the Eglass-epoxy but with the balsa layer crushed that 

produces the open disbond. The fig. 1.19 shows that an open disbond is detectable in 

a normal incidence measurement whereas for a KDB, virtually there is no difference 

between the bonded and disbonded locations in the RF signal, as shown in fig. 1.20. 

Both dash curves, red and blue, in fig. 1.20 correspond to the RF signal measured over 

a KDB area in a normal incidence measurement while the black solid curve is the RF 

signal for a good bonding. A direct comparison among these three signals shows no 

discernable difference that can be exploited for unambiguous detection of KDB. 

Tap testing is widely used as a tool for a quick evaluation of any accessible surface 

to detect the presence of dclamination or debonding. The tap testing procedure consists 

of lightly tapping the surface of the part with a coin, light special hammer, or any other 

suitable object. The acoustic response is compared with that of a known good area: a 

"flat" or "dead" response is indication of a flaw. The acoustic response of a good part 

can vary dramatically with changes in geometry, in which case a standard of some sort 
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Teflon insert - KDB 
2 inch diameter 

Figure 1.15 Photograph of the Government Furnished Property (GFP) 
balsa-core composites with artificially created KDB - Teflon 
insert 

Figure 1.16 Photograph of the GFP balsa-core composites with artificially 
created KDB - mechanically separated layers 
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is required. An instrumented tap test system that uses an accelerometer with a brass 

tip as a tapper, has been developed at Iowa State University by a group of researchers 

led by Dr. David K. Hsu [49], [80], [11]. The tap test system can be used for producing 

images of the local stiffness that revealed the presence of defects as well as internal 

substructures. An example of tap testing performed on a bi-layered Eglass-epoxy/balsa 

composite with an impact induced open disbond is shown in fig. 1.21. The result is a 

color-coded map of the local stiffnesses of the composite, presented in a similar fashion 

as a C-scan. The red color represents a decrease in stiffness and reveals the presence of 

an open disbond. A totally different case is when exactly the same method is applied 

to detect the presence of a KDB. Fig. 1.22 shows the result of a tap test performed on a 

bi-layered Eglass-epoxy/balsa composite with a "true" KDB. It is clear that the result 

fails to reveal the presence of the defect. In conclusion, although both conventional 

normal incidence stress-wave testing and tap testing produce positive detection of open 

disbonds in bi-layered composites, both methods fail to detect KDB in exactly the same 

samples leaving any "true" KDB virtually undetectable. 
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Figure 1.17 "True" KDB fabrication process setup for GFP balsa-core com­
posites 
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Figure 1.18 Photograph of the GFP balsa-core composites with "true" 
KDB induced by static pressure 
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Figure 1.19 Conventional normal incidence C-scan performed on a 
bi-layered Eglass-epoxy/balsa composite for detection of a open 
disbond 

KDB 1 
KDB 2 
Good bond 

0,5 

O) 

•0.5 
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Figure 1.20 RF signal from a normal incidence measurement on a bi-layered 
Eglass-epoxy/balsa composite with a "true" KDB. Red and 
blue dash curves corresponds to signals recorded over distinct 
KDB areas whereas the black solid curve is measured for an 
known good bond. 



www.manaraa.com

43 

M O  

h 11 

12 

-13 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Figure 1.21 Tap testing performed on a bi-layered Eglass-epoxy/balsa com­
posite with an impact induced open disbond 

aaMaaaaaaa'aKaiaEtaaaaaagw^i 'aa*i -ariN*Naaaaaa.aaa»Mam*aaamaLaaaa« 
aaaaaci"%na»«ar%&^kxmm<R»:i<»i»igaaRn 

#«@%v^9i!:#aa*aaaaaaKW gaa-c.-aK&.^a^uap'rfyfi^Q^aaasmaaaa^ amawL,2»Kaaaa.aaa%:*iL%s»kaaK5a*9im*« mrnKmarnaf' 

mMiaaaaaamB^aaKAaia^iKmKyaiKXKmaa# 

maamaaaaa.jujmï^^^^tiiia^oaramaKMm# 
aaai-a#am*».R%r'\^!="*Aim^'*a:=i=4g#'T.*#*x 

'/ftf «K)I B ̂  5: .T. K=ÏH' lk:ÏJ w."^ *#»#%/ 

mm'G^'arfai'zzz^Kxy^^rwa&wpMmiHf i 
#<«MK!!»»Ryiiêwa'«MiMa&jia»'.Ma»*#!#aaaim#;* 
%.m»i5i";s!S^aaàitfiR(i((amiaK##ae«k#.mm*ii*!"!! 
« #K25*aaaama awPWMwaaaassaaa:» awrny *aaaaa&:am w*i maaaaawiaRmaaaKw ^a^maamaaaaaaaa&aa*maa^yaaa*a« 0Kt*WNiy!Wi&'WWHhdMi40W0i00IWW4N0 

0.375 1.875 3.375 4.875 6.375 7.875 9.375 10.875 

t:: 
-2.25 

Ê?» 
-4,5 

-5.25 

t~6 

[6.75 

(-7.5 

-8.25 

IL 
-10.5 

tr 
Figure 1.22 Tap test performed on a bi-layered Eglass-epoxy/balsa compos­

ite with a "true" KDB 
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Results and discussion 

In this section is described the data processing of leaky Lamb wave C-scans; also 

presented and discussed are results of this method for foam-core marine composites 

with artificially induced KDB and balsa-core composites with two different types of 

KDB (Teflon inserts, and true "kissing disbonds"). 

As mentioned in the previous section, the excitation of Rayleigh-Lamb waves is 

achieved by using water as a coupling medium and positioning a transducer at an angle 

to the sample, according to the coincidence principle. The principle states that an 

incident wave in a coupling medium may be used to excite a plate wave if the component 

of its wavenumber in the direction along the plate (x-axis) matches the wavenumber of 

the plate wave. By the same analysis, a transducer positioned to receive a leaking 

signal from the plate would be set at the same angle from the normal. By the use of 

an infinitely wide plane wave transducer and a single frequency signal the coincidence 

principle could be used ideally to excite a specific guided wave. In practice of course this 

is impossible because of the angular spread and frequency bandwidth of the transducers. 

However, by controlling the angle of the transducer and the frequency content of the 

signal, it is possible to direct the acoustic energy to a region of the dispersion curves 

where a particular Lamb (plate) wave can be excited into the facesheet composite. When 

the test conditions are chosen correctly, a low-damping Lamb wave will be excited in 

the glass-epoxy facesheet only in the case of a KDB. If there is a good mechanical 

shear contact between the glass-epoxy and balsa core, the carefully chosen frequency 

bandwidth and incident angular range will not excite a propagating Lamb wave into the 

glass-epoxy/balsa plate but an evanescent wave that is quickly damped. The lack of 

bonding at the facesheet-core interface permits the Lamb wave to propagate along the 

layer; in this case the wave propagation is damped by material losses and the energy 

leakage into the water only. Our results use this hypothesis to enhance detection of the 
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otherwise elusive KDB. With a disbond, most of the energy in the generated Lamb wave 

appears as a leaky wave in the fluid. 

This method produces a very reliable difference between the spectrum of a good bond 

and one of a KDB (the KDB causes a minimum, revealing the propagating Lamb mode). 

Figure 1.23 presents both spectra for easy comparison. Away from the delamination, the 

reflected spectrum is dictated by the specular reflection - low in the outer portions, and 

high in the center of the transducer frequency range. Over the delamination, a minimum 

develops in the center of the spectrum. This minimum is an unequivocal indication of 

the presence of a propagating Lamb wave. The indication exists here because of the 

presence of the delamination and the lack of bond to the underlying balsa/foam core. 

The absence of the bond means that the facesheet can sustain a Lamb wave mode, whose 

subsequent energy leakage into the fluid is observed as a decrease in reflected amplitude. 

The correlation of the spectrum change with the delamination region was demonstrated 

on different samples. 

At each ( x ,  y )  position on the scanning grid, a waveform is measured. To produce 

the C-scan pixel corresponding to that specific position, a frequency window is imposed 

over the waveform spectrum at a location corresponding to the frequency of the chosen 

propagating Lamb mode. The minimum or the average value of the amplitude inside 

the window is recorded and stored. The process is repeated for the rest of the desired 

scanning grid positions. The result of this process is presented in fig. 1.13. 

Before starting the measurements to detect KDB, a measurement is necessary to de­

termine the propagating Lamb modes of the facesheet. Several combinations of incident 

angle 6 and frequency are recorded. In the case of a good bond, no leaky Lamb wave 

is observed within the bandwidth and incident angular range tested. After carefully 

performed tests, one Lamb mode has been identified as more sensitive than the nearby 

modes to the presence of KDB. The geometry required to excite this preferred Lamb 

mode has been maintained for tests performed on other glass/epoxy-balsa samples. In 
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fig. 1.24 is presented the result of the C-scan over a scanning grid of 110 mm X 120 mm, 

which includes the KDB area for a Teflon insert sample. 

The difference between the good bond area and the KDB is clearly shown by the con­

trast difference. No image enhancement (contrast stretching or histogram equalization) 

was performed over the measured data. The detected size of KDB is about 50 mm, very 

close to the actual defect size (2 inches — 50.8 mm). Two more results are presented 

in fig. 1.25 and 1.26 to demonstrate that, with the same settings and test procedure for 

similar samples, the results are consistent. In all three samples, the artificially created 

KDB has been obtained using Teflon inserts of similar size. The dotted circle visible on 

the top of the each C-scan shows the actual detected size of the KDB, which is close 

to the one of the inserts. Because no surface finish has been performed for any of the 

samples, some of the extra features present on the C-scans could be results of local 

thickness changes owing to the woven glass-epoxy facesheet. 

Even though samples 1, 2, and 3 are different and contain independently prepared 

KDBs, our method for detection of the simulated defect with a Teflon insert produces 

consistent results. For all three samples the unequivocal difference in contrast corre­

sponding to the actual KDB area (as easily identified in fig. 1.15) shows that, with a 

carefully chosen experimental geometry, a facesheet-propagating Lamb mode can be ex­

cited only when the KDB is present. The existence of this mode is shown as a minimum 

in the reflected spectrum and mapped over the scanned area to produce the image of 

the glass/epoxy-balsa interface. 

An entirely different case is represented by the foam-core marine composite. For the 

foam-core composite the difference between a good bond and a KDB or even an open 

disbond is small, because the acoustic impedances of air and foam are close (Zm>.=0.0004 

MRayl, zai rex0.0264 MRayl). This similarity is expected to produce a far smaller 

contrast difference between a KDB and a good bond. A result of inspecting a foam 

core marine composite is presented in fig. 1.27. Keeping the same geometry as in the 
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Figure 1.23 Measured signal: good bond vs. KDB. The dotted line is the 
measured signal for a good bond and the continuous line rep­
resents the measured voltage over a KDB. 
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Figure 1.24 LEW C-Scan: marine composite with Teflon insert - sample 1. 
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Figure 1.25 LLW C-Scan: marine composite with Teflon insert - sample 2. 
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Figure 1.26 LLW C-Scan: marine composite with Teflon insert -sample 3. 
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previous experiments, the measurements seem to show the presence of the KDB, but 

this conclusion is definitely equivocal because the scan also detects other hidden features 

not intentionally simulated. 

One explanation of these extra features might be found in the sample handling. 

Damage of the foam core or facesheet could easily have occurred during the fabrication 

process or during shipping from the Naval Surface Warfare Center Carderock Division 

(NSWCCD) to our lab. Another possible explanation can be found in the different failure 

mechanisms that operate in the glass/epoxy-balsa and glass/epoxy-foam composites. 

In the balsa-core material, the failures are almost exclusively at the wood-composite 

interface, essentially all adhesive failures. By contrast, in the foam-core composites, most 

failures occur in the vicinity of the interface but separated from it by a few millimeters 

at least. We reason that the penetration of the epoxy into the open-cell foam stiffens and 

strengthens the foam in the interfacial region, causing the weak zone to occur somewhat 

deeper into the foam and away from the interface with the glass/epoxy. The effect of 

these different failure mechanics is that the failed glass/epoxy facesheet has a substantial 

remnant of foam core attached to it. This remnant foam at the failure site, as observed 

experimentally, can still attenuate the leaky wave quite effectively. Another way to view 

the situation is that the method discussed here has strong applicability only in the case 

of glass/epoxy-balsa composites and much less utility for the foam-core materials. 

So far, the results shown have been observed in samples with simulated KDBs. These 

defects are close to those of a real KDB but, because they are fabricated, none have all 

the characteristics of a real disbond. In the previous section we presented the process by 

which "true" KDB samples are produced from the GFP balsa-core composites. Because 

we do not simulate the KDB, but rather create the conditions for the disbond to occur 

naturally, our scheme produces 'true" KDB. Following the same inspection procedure as 

presented before for the Teflon insert samples, the resulting C-scan of the "true" KDB 

sample is shown in fig. 1.28. 
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Figure 1.27 LLW C-Scan: marine composite with foam core. 
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Figure 1.28 LLW C-Scan: marine composite with balsa core and static pres­
sure induced KDB. 
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The high contrast between the good bond area (red) and the KDB (blue) demon­

strates that the detection of a real KDB with selective Lamb modes monitoring is fea­

sible. An additional feature, which is not related to the interface condition but which 

influences the overall amplitude of the reflected signal when scanned, was later identified 

to be a surface artifact. This artifact is clearly seen in fig. 1.28 as a vertical strip of lower 

contrast that crosses through the center of the scan. If this spurious feature is ignored, 

the result shows good detection of an otherwise invisible real KDB. 

Conclusion 

For many advanced bonded materials, KDBs, virtually undetectable by traditional 

inspection techniques, constitute a real challenge. The requirement for safety always 

exceeds the need for performance. The nature of these discontinuities and their location 

constitutes a serious obstacle to their detection. In this work we focus our study on the 

detection of these defect in bi-layered composites suchlike the Eglass-epoxy/end grain 

balsa and Eglass-epoxy/Airex R82 structural foam currently employed by United States 

Navy for hulls and decks in high speed offshore power boats and for the large double 

truncated pyramid mast for housing sensitive radar equipment. 

In this chapter is shown a way to exploit the unique capabilities of guided acoustic 

waves to our advantage. We present an approach that leads to positive identification of 

KDB in a complex marine composite. 

This methodology exploits the fact that a propagating Lamb wave in the glass-epoxy 

facesheet composite will exist only when a KDB is present at the location of the inci­

dent beam. The leaky wave into the upper fluid is then detected and monitored over 

the scanning grid, producing a C-scan of the interface with clear discrimination be­

tween well bonded areas and KDBs. A theoretical evaluation of the received voltage 

is developed, using the complex transducer point model. Numerical evaluations of the 



www.manaraa.com

52 

voltage corresponding to different interface conditions are compared with the experi­

mental measurements. The theoretical predictions are shown to be in good agreement 

with the experiment for a variety of samples and disbonds. The inspection technique 

was tested for different samples with artificially induced KDBs. A process that produces 

"true" KDB was developed and tested. We found that all of the KDBs were positively 

detected and identified, indicating the reliability of our method. 
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CHAPTER 2 CHARACTERIZATION OF THE 

NON-CONTACT ELECTROSTATIC TRANSDUCERS 

Introduction 

Most NDE ultrasonic experiments require that acoustic waves travel through a fluid 

medium that couples the radiating energy of the transducer to the tested sample and/or 

vice versa. Water or other liquids are used for immersion tests, coupling liquids or gels 

for wet contact coupling, and air/gas for non-contact tests. Therefore, it is important 

to be able to characterize the behavior of the pressure field of ultrasonic probes in fluid 

media. The focus of this chapter is the study of the field pattern of an electrostatic 

air-coupled transducer. Experimental results are presented for both planar and focused 

transducers and compared with theoretical predictions. The transducer's pressure field is 

obtained using the complex transducer point model and compared with the conventional 

piston model. 

The characterization of ultrasonic transducer fields is not new; it has been employed 

for many transducer types and applications. Recent advances in the design and im­

plementation of air-coupled transducers, especially with focusing devices or natively 

focused probes, make feasible the non-contact evaluation of materials properties. The 

detailed study of such an ultrasonic tool can play a significant role in the development 

of air-coupled NDE techniques for quantitative materials characterization. 

In the most common model of a planar transducer, as the model developed by 

Schmerr [92], the probe particle velocity is assumed to be constant; over the transducer's 
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surface. With this model, known as the piston transducer model, the pressure field can be 

easily calculated at any arbitrary location in a fluid. For more complicated geometries, 

where a source, receiver, and eventually a sample are present, this piston transducer 

model still provides good results, although it requires for the numerical evaluation of 

the received voltage higher computational power. Numerical evaluation of the pressure 

field of focused probes is an even harder task. To derive a solution for mono-frequency 

focused beams using the Rayleigh integral approximation, Williams [98] and O'Neil [78] 

assumed the curvature of the source to be weak and the frequency high enough so that 

no significant diffraction phenomenon is present. Lucas et al. [67] used the Fresnel 

approximation of both the field integral and the boundary conditions to investigate the 

radiation of a mono-frequency focused source. Levin et ai. [60] projected the field onto 

a plane at z = 0 perpendicular to the acoustical axis and redefined the velocity profile 

for this plane in order to apply the Rayleigh integral. The transducer's focal length is 

assumed to be sufficiently large compared with the wavelength to allow one to ignore 

the diffraction from the finite size of the probe. Hamilton [41] compared these three ap­

proaches and showed good numerical results for small aperture angles in the focal region 

and beyond for all three, although differences exist in the near field. Another approach 

was taken by Zeroug et al. [99], who developed the complex transducer point (CTP) 

model. In 1971 Deschamps [30] introduced the complex source point as a mathematical 

artifice to model a Gaussian beam. When a point source is translated from the real plane 

into the complex plane its field in the real plane is very nearly Gaussian. Lobkis et al. 

[62] demonstrated that even though the field of a transducer does not have a Gaussian 

shape, in the calculation of the received voltage that depends on both receiver's and 

source's field pattern, the Gaussian beams can replace the combined piston directivity 

functions without loss of accuracy. Therefore, the CTP is a good approximation for a 

piston beam in a two-transducer voltage model. Zhang and Chimenti [101] investigated 

the difference of beam reflection from anisotropic plates between a 2D and 3D CTP 
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model, Zhang et al. [102] studied the influence of the experimental geometry on the 

received voltage and on the CTP model parameters and applied this model in materials 

characterization [103]. Fei et al. [31], [32] modeled with CTP arid multiple CTP the 

pressure field of both planar and focused transducers to obtain accurate predictions of 

the transducer voltage in both water-coupled reflection and transmission experiments, 

and they exploited the model to infer elastic stiffness from a subset of the measured 

data. 

The task of characterizing experimentally the pressure field of the air-coupled trans­

ducers is important because of the large variation in types of capacitive probes. For most 

NDE applications, piezoelectric probes are used. In the case of air-coupled measure­

ments, the use of piezoelectric probes dramatically lowers efficiency owing to the large 

acoustic impedance mismatch between the piezo ceramic and air, and the efficiency can 

be improved only marginally with impedance matching layers. An electrostatic trans­

ducer is a much better choice, providing a large sound amplitude with a relatively wide 

ultrasonic bandwidth. The drawback to these probes is that they are quite susceptible to 

damage and to electrical breakdown. A characterization of several types of air-coupled 

transducers was reported by Gachagan et al. [38] and by Pizarro et al. [81] for electro­

static grooved backplate transducers. The measurement and numerical modeling of the 

diffraction field of a piezoelectric ceramic with matching layers was presented by Gudra 

et al. [40]. Because the behavior and performance of the air coupled electrostatic probes 

rely heavily on the backplate mechanical finish, the goal of reducing the variability of 

air-coupled probe efficiency reduces to controlling the roughness of the backplate. The 

rest of the parameters are more easily controlled through the bias voltage or metalized 

dielectric film [90]. Bashford et al. [12] investigated quite extensively the pressure field 

of a micro machined capacitive foil transducer in various configurations, including beam 

focusing with a Fresnel plate [91]; comparison of the results with values predicted by 

theoretical calculation based on a planar piston model showed good agreement. Other 
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investigators have used laser tomography [13], [4], [70] to measure the beam profile 

for air-coupled transducers or have used equivalent circuits to predict their directivity 

patterns and resonance frequencies. 

In this chapter, experimental measurements of the directivity pattern for planar 

capacitive foil transducers with and without reflective focusing devices are reported. The 

high amplitude generation in air and large bandwidth of such probes make them desirable 

for most non-contact NDE inspection techniques, especially for material evaluation. This 

type of transducer can be described from the electrical standpoint as a capacitor, with 

one of its electrodes very light and mobile (a metallic layer deposited on the dielectric 

film) and the other a fixed backplate with induced roughness. A bias voltage applied 

on the capacitor keeps the dielectric film in contact with the backplate by electrostatic 

force. When a transient voltage is applied over the capacitor, the dielectric film with 

its metal layer vibrates because of variations in the amplitude of the electrostatic force. 

These vibrations are transmitted into the air as sound waves. When a sound wave 

propagating in air arrives on the transducer surface, it produces mechanical vibrations 

of the foil and time-varying charge on the capacitor. The time-varying charge is then 

further amplified by a charge amplifier and converted into a transient voltage. From a 

mechanical standpoint, the probe acts as a vibrating membrane in which sensitivity is 

controlled by the mass per unit area. Many factors influence the transduction mechanism 

in the membrane [18], such as: membrane response to the characteristic wavelengths of 

the backplate periodicities (induced roughness), drum-like vibration over the backplate 

pits, and quarter wavelength resonances of trapped air in the plate's roughness. A 

focused acoustic beam is obtained by allowing the planar probe's field to be totally 

reflected by a parabolic mirror. Experimental measurements are compared with the 

numerical analysis of the analytical CTP and piston models. The measured directivity 

patterns are in good agreement with the theoretical field calculations. 
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Experiment 

If a circular transducer with its active surface in the plane ( x ,  y )  is considered, then 

its acoustical axis is pointing along the --direction away from the transducer's surface 

for z > 0. Because of the transducer symmetry in the plane (x, y), polar coordinates 

can be used (x = pcosd, y = psin8) with p the radial or "cross-sectional" direction and 

Q the polar angle. The experimental measurement of a transducer's acoustic profile can 

be performed ideally by sampling its ultrasonic field in the half-space z > 0 with a point 

receiver. For convenience, the sampling is performed with the point receiver scanning 

in a plane (xr, y#), parallel with (x, y) and perpendicular to the acoustical axis, at 

discrete separation distances between the transducer and the point receiver. This action 

will produce a spatial representation of the "cross-sectional" pressure. Because of the 

cylindrical symmetry of a circular transducer, a line scan would be sufficient to measure 

the off-axis pressure. In the case of a quasi-line focused beam, the line scan will be 

performed along a direction perpendicular to the focal line owing to the symmetry of 

the beam. The point receiver in the air-coupled directivity measurement is constructed 

from a capacitive foil probe with its aperture masked by a high attenuation material 

(open cell foam) with a central pinhole. The diameter of the pinhole is 0.1 mm, which 

is less than half of the smallest measured wavelength. The wavelength of an ultrasound 

wave in air at 1 MHz is 0.343 mm. The experimental setup is presented in fig. 2.1. 

The y-axis was chosen along the quasi-line focus and z-axis to correspond to the 

acoustical axis of the beam. To obtain the "cross-sectional" pressure field, the measure­

ments are performed along z-axis in a line scan. In the case of a planar transducer, the 

x- and y-axis are both pointing in the radial direction of the beam. 

Measurement of the directivity patterns of planar and of focused transducers is sim­

ilar in theory but performed with different experimental setups in the two cases. The 

apparatus involved in the case of planar probe, and presented in the following para-
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graph, was found to produce satisfying results initially. Later, for evaluation of material 

properties with focused probes, an improved setup was designed: a faster data acqui-

sition system in conjunction with a novel digital signal processing procedure, and the 

capability of custom excitation waveforms. This approach helped to boost significantly 

the signal-to-noise ratio (S/N), filtering out interferences and speeding up data acquisi­

tion and processing. Although results from the directivity pattern of focused probes are 

presented here, the second arrangement will be described in detail in the next chapter 

in connection with extensiv use in material evaluation. 

The experimental arrangement has three main components: an automated scan sys­

tem, an excitation/reception apparatus, and a data acquisition and processing compo­

nent. The Parker Daedel MC4000 scan system has a spatial resolution of 0.01 mm 

for the two axes, which are computer controlled. The transducers' orientation can be 

independently changed with two rotation stages with a precision of 0.01°. The exci­

tation /reception apparatus is computer controlled through a GPIB interface. Both the 

measurement parameters and the data acquisition and processing flow are managed with 

a LabView software interface on an IBM compatible PC. The excitation is a rectangular 

window tone burst produced by a RITEC RAM 10000 system. The central frequency of 

the burst is changed in discrete steps to cover the entire useful bandwidth of the probes. 

Because we use in our analysis only the central frequency of the burst any contribution 

from the side lobes is neglected. This transient voltage is applied over a bias circuit to 

the terminals of the transmitter. The bias is required by the capacitive foil transducer to 

function; therefore, the transmitter and the receiver each has its own bias circuit. The 

received signal is amplified with a Panametrics 5660B low noise preamplifier in the first 

stage. Second, a RITEC BR640 broadband receiver is used to further amplify the signal 

to a level adequate for the oscilloscope input. The oscilloscope LeCroy 9304A acquires 

and digitizes the raw data. A limited data processing is performed with the oscilloscope 

math module for quick evaluation and interpretation. For each z position, the data is 
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saved as a separate file on the computer's hard drive for further analysis. 

The maximum power output of the signal generator is 5 kW rms into a 50 SI load. 

The harmonic distortion at the 5 kW rms level (~ 1000 Vpeak-to-peak) is less than -40 

dB for the second harmonic but about -20 dB for the third harmonic relative to the 

fundamental. The capacitive transducers have a nominal capacitance of 600 pF. The 

Cooknell CA6/C charge amplifier, which provides its own well regulated variable bias 

supply of 100 V, has a flat frequency response from 100 kHz to 20 MHz, a low noise input, 

and a sensitivity of 250 mV/pC. The Panametrics 5660B preamplifier has a bandwidth 

at (-3 dB) of 20 kHz - 2 MHz with an equivalent input noise of 5 //Vpeak-to-peak- The 

maximum output voltage is 2 Vpeak_to-peak into a 50 Q load. Its gain can be set to 

40 dB or 60 dB. The RITEC BR640 receiver's bandwidth is 100 kHz - 50 MHz with a 

maximum gain of 64 dB when it is operating with a 50 Q load. The gain can be changed 

with steps of 4 dB in the range -12 dB to 64 dB. 

Capacitive foil transducers 

The capacitive foil air-coupled transducers are schematically presented in fig. 2.2. 

The micro-machined backplate has a well defined pit geometry. The detailed manufac­

turing process is explained in detail by Schindel [90]. The pits, which have an average 

diameter of 40 fim and depth of 35 /mi are periodically distributed over a grid with unit 

size 80 /j,m. A DC bias is applied to hold the metalized film and to squeeze out the 

air between the membrane and the backplate. The pressure sensitivity of this device 

reported by the manufacturer [90] is 0.7 mV/Pa. The characteristics and performance 

of this type of probe are influenced by the roughness of the backplate, the metalized 

dielectric film, the bias voltage and the transient excitation. 

As previously mentioned, Carr and Wykes [18] found several possible transduc­

tion. mechanisms for air-coupled probes: membrane resonances, drumhead modes, and 

quarter-wavelength resonances of waves in air in the pits. The resonant frequency and 
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Metallic layer Dielectric film 
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Figure 2.2 Schematic section of an air-coupled capacitive foil transducer. 
The disks of the capacitor are the micro machined backplate 
(controlled roughness) and the metallic layer on the dielectric 
film. 

the bandwidth of the transducer are determined by the superposition of these mech­

anisms. Also, the membrane's mass and stiffness affect the amplitude and frequency 

dependence of the vibrations. To detect small amplitude oscillations in air, the detec­

tor's membrane needs to be light. Therefore, the sensitivity of the detector is increased 

with a decrease of the film thickness for the same metallic layer. The thinnest dielectric 

film (Mylar/Kapton) commercially available has a thickness of 2.5 /iin and is offered 

with gold or aluminum metal layer. Taking into account that the average thickness of a 

metallic layer is about 1000 A, the mass is estimated to be for the gold layer, 1.9 g/m2 

and for the aluminum layer 0.3 g/m2. The mass of a 2.4 /mi Mylar film is 3.3 g/m2; the 

mass of a Mylar membrane is then 5.2 g/m2 with gold layer (37% gold, 67% Mylar), but 

is only 3.6g/m2 with aluminum layer (7% aluminum, 93% Mylar). The aluminum layer 

is preferred over gold because its weight is lower so that it produces higher sensitivity and 

larger bandwidth for the detector. The stiffness of the membrane is controlled through 
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the bias voltage; a higher bias increases the stiffness and produces a larger bandwidth. 

The attenuation of ultrasonic waves in air above 500 kHz increases with the square 

of the frequency, with the square root of the temperature, and with the atmospheric 

pressure, while below 500 kHz, humidity is an additional factor [17]. For example a 

propagating wave in air at 1 MHz is attenuated with 160 dB/m. Therefore, the trans­

mitter needs to generate enough energy for the ultrasonic wave to travel through the 

air and eventually to couple guided waves into the sample. The transient voltage exci­

tation necessary to produce the desired air-coupled wave has a peak-to-peak amplitude 

of 400-500 V, and is applied with the negative DC bias over the capacitive transducer's 

plates. In order to prevent generation of nonlinear effects in the membrane vibration, 

the amplitude of the bias has to exceed the maximum amplitude of the excitation. Thus, 

the transmitter's dielectric film must be able to sustain transient voltages with peak-to-

peak amplitudes twice the value of the bias voltage. Because of the tenuous nature of air 

and the extremely poor energy coupling to most materials, any air-coupled ultrasonic 

experiment demands a high-energy generation of the acoustic waves into the air for the 

transmitter and a high sensitivity for the detector. Thus, the transmitter must be able 

to accommodate higher transient and bias voltages than the receiver; for this reason, the 

transmitter must accommodate a thicker dielectric film (10 — 15/mi) than the receiver 

(2 — 5 /mi). 

The voltage across a dielectric material, thus the field within, cannot be infinitely 

increased; eventually a threshold is reached for which a substantial current flow appears 

between electrodes. This limit is called dielectric breakdown. In liquid or gaseous di­

electrics the breakdown does not generally causes a permanent damage of t he media, 

however, in solid dielectrics the breakdown invariably produces a permanent damage. 

The dielectric strength is the maximum voltage that can be applied to a dielectric wit h­

out. causing dielectric breakdown. The dielectric strength depends on a variety of factors 

such as the amplitude of the voltage, duration and frequency of the applied transients, 
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molecular structure of dielectric, nature of electrodes, temperature, and humidity [52]. 

There are also aging effects that produce reduction of the dielectric strength. In the 

case of a solid dielectric there are various type of breakdown that can occur separate or 

simultaneously. The most common type is the one known as the intrinsic, electronic, 

or electron avalanche breakdown, where free electrons in the conduction band are ac­

celerated by the electric field, which exists between electrodes, and ionize a host of 

atoms producing an avalanche of other free electrons and eventually a substantial cur­

rent flow inside the dielectric. Another mechanisms are the thermal breakdown, internal 

discharges, external discharges, material aging and last but not least, the electrome­

chanical breakdown. The latter type is significant when the elastic deformation of the 

dielectric cannot balance the compressional forces produced by electrostatic attraction 

between electrodes [52]. Even though the maximum dielectric breakdown voltage for 

Kapton and Mylar is high ( approximative^ 300 kV/mm for Kapton and 400 kV/mm 

for Mylar), the voltage applied on the transducers was kept at a safe 10% of this value 

in all experiments to prevent the occurrence of any of type of dielectric breakdown. 

Fig. 2.3 is a photograph of the active surface of a capacitive foil transducer. This 

particular probe is of interest because it shows degradation of the metallic layer. This 

transducer was still functional in the condition seen in fig. 2.3, but its performance 

was reduced to 20%-30% of its performance in its original state. Replacement of the 

dielectric film solved the problem and restored the probe's performance. We found 

film replacement to be simple and easy to perform. So far, there are no reports in 

the literature of factors producing failure of the metalized film. Identification of the 

mechanisms that produce such failure needs further research, but this is not our purpose 

in the present study. 
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Figure 2.3 Photo of an actual capacitive foil transducer. The active sur­
face of the probe is approximative^ 10 mm. The dotted curve 
identifies the area where the metalized dielectric membrane is 
altered. 

Focusing mirror 

One important advantage of using air-coupled ultrasonics is that we can exploit even 

weakly focused beams to produce a relatively large angular range inside most engineering 

materials. This is possible because of the difference in the acoustic impedances of air 

and various samples (e.g., Zair=400 Rayl, Zaiuminum=l7M MRayl, ZiucUe=3.2 MRayl, 

Zwater=1 • 48 MRayl). According to the coincidence principle or the phase matching 

condition, an incident acoustic beam of about 20° angular spread will excite the majority 

of phase-match angles simultaneously in most materials (i.e., metals, plastics, carbon 

and glass fiber composites). In the case of the metals, 10° is sufficient to couple the 

energy into the sample, for example an incident angular beam spread of 7.8° (second 

critical angle) will excite all phase-match angles in an aluminum plate, an incident angle 

that is any higher will produce total reflection back into the surrounding air. 

The actual capacitive foil transducers that we use have planar active elements. To 
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increase their angular range, we designed a focusing device, an acoustic mirror, for 

both transmitter and receiver. In fig. 2.4 one of the acoustic mirrors is shown in light 

gray, while the planar capacitive probe is dark blue and the rays generated by the active 

element in the plane ( x ,  z )  are red color. The focusing mirrors have a cylindrical parabolic 

shape that provides a quasi-line focus along y-axis. The transducer's acoustical axis is 

parallel to the x-axis before being reflected by the mirror and parallel to the z-axis after 

reflection. The focusing mirrors were designed with a 3D CAD software SolidWorks to 

produce an angular beam spread of A# — 16°. 

Fig. 2.5 presents the measured angular beam spread of the transducer/mirror system; 

the white portion represents the high value and the black portion the low value of the 

amplitude of the acoustic pressure. The acoustic field of the focused transducer/mirror 

system has been measured at equally spaced locations along z-axis in the focal plane 

(z=0) with a point receiver. A planar capacitive foil transducer with a 0.1-0.2mm 

mask (open cell foam) was employed to simmulate the quasi-point receiver. A 2D FFT 

transforms the raw data (time-space) into the spectrum (wavenumber k - frequency f) 

shown in fig. 2.5. The acute angle (solid lines) approximates the angular beam spread 

of the focused probe (Ad ~ 16°). A complete description of the experimental procedure 

can be found later in this chapter. 

A rapid prototyping process, stereo lithography, was used in producing the physical 

objects from the 3D computer model. Stereo lithography, or SLA, creates a tangible 

three-dimensional physical object from a CAD drawing, by directing ultraviolet laser 

radiation onto a vat of photosensitive polymer resin. The resin, DuraForm™ Nylon 

glass-filled (GF), is cured, layer-by-layer, with a computer-controlled laser. The vertical 

resolution of the laser is 0.001 mm but the layers' resolution is 0.025 mm, dependant 

upon geometry, build parameters and material. After being cured in an ultraviolet, 

oven, each piece is hand-polished and finished to specifications. The surface finish of the 

acoustic mirrors is obtained to be approximative!}' 1.0 jim. 
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Parabolic mirror 

Capacitive foil transducer 

Figure 2.4 SolidWorks 3D computer model of the acoustic mirror. The pla­
nar electrostatic transducer is shown in dark gray, while the pla­
nar capacitive probe is dark blue and the reflected and focused 
rays are red. 

Wavenumber k (mm ) 

Figure 2.5 The measured spectrum of the focused probe. The pressure 
field is sampled at equally spaced position in the focal plane. 
A 2D FFT transforms the (time-space) data into (wavenum-
ber k - frequency f) spectrum. The spectrum has its ampli­
tude color-coded, with white representing the highest value while 
black corresponds to the lowest amplitude. The acute angle ap­
proximates the angular beam spread of the focused probe. 
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To obtain a similar shape of the acoustic beam, the system planar foil transducer -

parabolic mirror can be replaced by a focused probe with the following characteristics: 

beam waist at aperture W0 % 10 mm and focal length F0 ~ 26.5 mm. These are the 

parameters used in the complex transducer point model for the numerical evaluation of 

the received voltage. 

Data acquisition and signal processing 

The transmitter's pressure field is sampled with a quasi-point receiver at discrete 

locations in the plane, which contains the transmitter's acoustic axis. As presented in 

fig. 2.6, the acoustic axis points in the z-direction while the active surface of the probe 

rests in the (x, y) plane. For discrete zn positions, a line scan is performed along the 

z-axis and the signal is recorded for equally spaced xm positions. The m and n are the 

number of equally spaced steps along the x- and z-axis respectively. The directivity 

pattern measurement consists then in implementing a (m, n) grid scan and recording 

individual waveforms W(t, xm, zn) for every node of the grid (m, n). After the desired 

number of waveforms W(t) have been recorded, a Fourier transform of the time domain 

signal is computed for each location. Next the amplitudes of a specific frequency are 

extracted from the spectra for every (xm) zn) of the scan. This three-dimensional data set 

(zm, zn, AF(xm, zn)) represents the mapping of the directivity pattern of the transmitter. 

For each step of the scan, the measurement parameters (i.e., position, excitation, 

reception) are controlled through the GPIB interface by LabView virtual instrument 

software. The excitation signal is produced by a RAM 10000 system, and is a tone-

burst with a user-controlled frequency, number of cycles, and amplitude. The frequency 

can be dynamically changed to cover the entire useful bandwidth of the probe in discrete 

steps. For covering the bandwidth 0.5-1.5 MHz, 20 tone bursts were used. 

The acquisition is done through the A/D converter of the oscilloscope and the raw 

data is then downloaded onto the PC hard disk. The LabView interface produces real 
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Transducer 

Acoustic field 

Figure 2.6 The grid scan for acoustic pressure measurement. The 
color-coded 3D plot represents a typical profile of a planar trans­
ducer. The red color corresponds to high amplitude and the dark 
blue to low amplitude acoustic pressure. The z-axis is the acous­
tical axis of the transducer. 

time data processing and analysis. Because of the very weak signals involved in an air-

coupled experiment, the signal is amplified to the maximum possible value allowed by 

the amplifiers' saturation thresholds. In spite of this, the typical S/N ratio is so small 

that signal averaging is required. The averaging reduces the white noise and improves 

the S/N ratio, but all the other noise sources remain present in the signal. For the 

directivity pattern measurement, in which the sound travels relatively short distances in 

air, the system and the procedure are satisfactory. This experimental system is, however, 

impractical for the mechanical property evaluation, being slow in data acquisition and 

processing. 

Transducer model 

Direct calculation of a piston-like transducer's field is performed by summing the 

contributions of infinitesimal area elements on the surface of the transducer at an ar­
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bitrary location in the coupling fluid. The received voltage is obtained according to 

reciprocity expressions of Auld [8] and Kino [53] as a sum of the transmitter's field over 

the receiver's surface, weighted by the receiver's directivity function. The numerical 

evaluation of the voltage integral can be complicated and time-consuming. However, 

it has been shown by Lobkis and Chimenti [65], [26], and Lobkis et ai. [63] that the 

received voltage is not altered but the numerical evaluations are substantially simplified 

if the transducers' pressure field are approximated with Gaussian beams. Furthermore, 

Zeroug et al. [99] and Fei and Chimenti [33] showed that the expression of the received 

voltage is simplified even more if the locations of transducers are translated into the 

complex plane and the finite transducers are replaced with point source and point re­

ceiver, respectively. The field profile of such complex source on the real axis is nearly 

identical to a Gaussian beam allowing the replacement of the transmitter with a complex 

point source and similarly, because of reciprocity considerations, the replacement of the 

receiver with a complex point receiver. 

Piston model - planar and focused transducer 

In a conventional ultrasonic experiment, using either pitch-catch or pulse-echo ar­

rangements, the quantity accessible to our investigation is not the pressure, although it 

is related to it, but the voltage. For this reason, it is important to be able to model the 

output voltage for a two-transducers setup, one transmitting and the other receiving. All 

possible experimental arrangements are particular cases for the relative location of this 

two transducers configuration. Let us consider the geometry shown in fig. 2.7 with the 

transmitter T located at (do, 0, h) and the receiver R at (—d0,0, h) in a pitch-catch ar­

rangement and a test sample along the z-axis. For a pulse-echo setup, both transducers, 

the transmitter and receiver, would have the same location in the model. For simplicity 

of calculations, we consider the centers of both transducer to lie on the z-axis of the 

coordinate system, and we further consider that the upper sample surface coincides with 
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the plane z  = 0. The angle that both transducers' acoustical axes have with respect 

to the normal to the sample is equal to a. The distance 2d would be the separation 

between the intersection points of the acoustical axis with the sample d = do — h tan a. 

Figure 2.7 Planar piston transducer model. Geometry for calculating the 
output voltage for two transducers in reflection setup. 

For convenience, let us use the notation st and sr for the surface of the transmitter 

and the receiver, respectively. The distance between the point P and a point A on 

the  su r face  o f  t he  t r ansmi t t e r  wi l l  be  g iven  by  r  =  (x T  — x ) 2  + (y T  — y) 2  + (zt  — z ) 2 .  

According to the Rayleigh formula, the pressure field of an incident ultrasonic wave 

produced by the transmitter T at an arbitrary point P(x,y, 0) on the sample plate 

surface can be obtain according to Schmerr [92] (equations (8.8) and (8.9) on page 159) 

as 

= %,(Aw)^^dSr(A) (2.1) 

where w is the circular frequency, is the fluid's density, A is the wavenumber and 

v z (A ,u i )  is the velocity distribution. The expression for the pressure field presented 

in (2.1) is valid for any particle velocity distribution on the surface st- In the case 
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of a piston transducer, the velocity distribution is constant over the surface St of the 

transducer (vz(A, tu) = v0(iv) on Sp and v2(A, w) = 0 elsewhere), and following Schmerr's 

approach the expression of the pressure is simplified to 

p  =  
2?r 

r p pzk-r—ut 

£—dSr (2-2) 

for the piston planar transducer's pressure field at an arbitrary point B.  For the rest 

of the calculation, the term will be ignored for simplicity. In order to find the 

reflected pressure field at the sample-fluid interface, Brekhovskikh's expansion of an 

incident spherical wave into plane waves [16] will be used in the following calculation. 

The spherical wave etkr/r is expressed in terms of plane waves by Brekhovskikh (equation 

(18.19) on page 240) as 

pikr /*2tt pir/2-too 
_ _ / d(f  I eikzTCose+iksm9[(xT - x )cosip+(yT--y)smip} (2.3) 

r  2tt Jo Jo 

with 9  the angle between the wave vector k  and the z-axis and i p  the angle between 

the z-axis and the projection of k on the (z, y) plane. The projections of the wave 

vec to r  a re  expressed  a s  k x  = k  s in  9  cos  <p ,  k y  = k s in  9  s in  i p  and  k z  — k  cos  9  wi th  k z  — 

•sjk2 — k% — k%. The integration with respect to <p is performed between the limits 

(0,7r). Because the z-axis projection of the wave number kz can vary from kz = k for 

kx — ky = 0 to kz = ioo for kx —> ±oo or ky —> ±oo, the integration with respect to 

9 must be performed on a complex contour from # = 0 to 6 = tt/2 — ioo. Substituting 

(2.3) in (2.2), we obtain the incident pressure field of the transducer as 

inc __ ^PfkVo IT f dtp f eikzT  cose+iksine[(xT~x) costp+(yT-y) simp] 

(2tt)2 JJSt  ./() Jo 
(2.4) 

When the variables that depend only on the geometrical location of the transducer are 

rearranged, the incident pressure field at an arbitrary point P on the sample surface will 

be given by 

.nc _ 
p2ir /ir/2—too 

p —  =  /  ( ^ /  ( 2 . 5 )  
°  Jo Jo 
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where 

D t{0, ip) = f f  
J J ST 

,ikzT cos 6+ik sin 8{xt COS <p+yr sin (2.6) 

is the directivity function of the transmitter and depends on the transducer's size and 

location. Equation (2.5) is the plane wave representation (with 6 the incident angle) of 

the planar transducer field in the plane z = 0. Upon reflection, the amplitude of each 

incident plane wave is modified by the reflection coefficient R(0) and the phase changes 

as the waves are reflected, yielding the reflected pressure field expression at an arbitrary 

point (x,y,z) as 

By allowing the arbitrary point (x. y, z) to be located on the receiver surface Sr at 

(xr, yr, zr), we obtain the expression of the pressure field on the receiver's active element 

as 

The voltage Viecv that is generated on the receiver's surface Sr that samples the trans­

mitter's acoustic field is obtained according to reciprocity expressions of Auld [8] and 

Kino [53] as 

with F(u>) a coefficient that depends on the frequency and fluid medium. Substituting 

(2.8) in (2.9), we obtain the voltage on the receiver in a similar fashion as equation (6) 

of Lobkis et ai. [62] 

,ikz cos 0—ik sin 8(x cos (p+iky sin ip) 

i n hi t Z"2" fir/2—«oc 
= I  * l  m)Dr(6^)é 

, ikzr cos 0-ik sin 9(xr COS ip+ikyR sin ip) 

(2.8) 

(2.9) 

^(g)DT(g, y)^^, f) sin recv (2.10) 

with 

çikzR cos 6-ik sin d(xR cos ip+yn sin ip) (2.11) 
J Sr 
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the directivity function of the receiver that depends on the transducer's size and location. 

Thus the problem of finding an analytical expression for the received voltage depends 

on the calculation of the transducer 's directivity functions Dr and DR. 

We shall consider, for simplicity, a polar coordinate system on the transmitter surface 

such that the Cartesian coordinates (x, y) that define the surface St are transformed 

into x = p cos (fit and y — psimpT, respectively. The coordinates of a point (xt, yt, %t) 

on the surface St will be given by xt = do + p cos a cos Ur = psimpT and zr = 

h — p sin a cos içt with the (d0,0, h) the center of the transmitter. Then the directivity 

function Dt can be expressed as 

r2ir 
D' 

ra r£K 
^ _ (J I prfp I dipTG i kP^COS"shl 9cos^-sina cose)cos vt+sin9 sin(psin<pT] 12) 

Jo Jo 

with C = etkhcose+ikdosmocosjf the notation cos/3 = cos a sin 9 cos ip — sin a cos 9 

and cos 7 = sin 9 sin ip is introduced, the phase term from equation (2.12) tp((pr) = 

cos a sin 9 cos ip — sin a cos 9) cos ipT + sin 9 sin ip sin <pr can be rewritten as 

V'(yr) = cos/) cos + cos 7 sin (p? = \/co8^/9 + cos^7cos(y»r — y), (2.13) 

with sin<p — cos7/yfcos2ft + cos27 and cosy = cosft/y/cos2 ft + cos27. The physical 

interpretation of the angles ft and 7, just introduced, is shown in fig. 2.8. As already 

stated, it is implied in the above calculation that the acoustical axes of the transducers 

lie in the plane (x, z). In the following calculation, we shall consider only the spatial 

beam spread of the transmitter to identify the angles ft and 7. The vector r has its 

direction along the acoustical axis of the transducer (versor er = r/r) and a is the 

incident angle, or in other words a = (r, —k) the angle between the normal to the 

sample's plane (x, y) and the acoustical axis r of the transducer. The vector p has its 

direction (versor = ^/p) along an arbitrary plane-wave direction of propagation (0, y) 

in three dimensions. The angle 9 is the angle between the arbitrary plane wave direction 

Gp and the normal to the sample, 0 = (ëp, —Â) and is the angle between the projection 
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of p on (x, y) plane and z-axis, <p — (AC, ï). The versor ea, as presented in fig. 2.8, lies 

in the plane (x, z) and has its projections on the axes of the coordinate system given 

by êa = cos ai + 0j + sin ak. With these clarifications we can show now that the angle 

(3 is the angle between the arbitrary plane-wave direction ep and the direction given by 

the versor ea, and the angle 7 is the angle between the arbitrary plane-wave direction 

êp and the y-axis. To obtain the cos /3 we consider the scalar product of êa and êp 

êa • êp = (cos ai + 0 j + sin ak) • (sin 6 cos <pi + sin 0 sin <pj — cos Ok) 

— cos a sin 6 cos y? — sin a cos 6 = cos (3. 

Similarly, taking the scalar product of ep and j we should have been led to cos 7 

(2.14) 

Figure 2.8 Schematic representation of the spatial beam spread of a planar 
piston transducer 

(2.15) 
ë), j = (sm#cosyM + sin 0 sin y j — cos #&) - (0% 4- Ij + OA) 

= sin 0 sin ip =- cos 7. 

Substituting the phase term ^(y>r) (2.13) in the integral with respect of y>r (2.12) we 

obtain 

/ = 2% Jo(^Vcos2 + cos^ 7), (2.16) 
Jo 
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with Jo(kp^/cos2 ft + cos2 7) the Bessel function of the first kind [6]. The directivity 

function Dr can be simplified to an expression much the same as equation (7) of Lobkis 

et ai. [62] 

= 2Ji(&aycos2/3 + cos27) ^ 

ycos^ + cos% 7 

with cos ft = cos a sin 9 cos <p — sina cos 9 and cos 7 = sin 6 sin ip. Furthermore, if we con­

sider the notation sin 5 = \Jcos2 ft + cos2 7, which yields cos S = \/l — cos2 ft — cos2 7 = 

sin 9 sin a cos (p + cos 9 cos a, we can make the observation that the angle S is precisely 

the angle between the arbitrary plane-wave direction êp and the transmitter's acoustical 

axis êr. 

êp • êr  = (sin 9 cos <pi + sin 9 sin <pj — cos 9k) • (sin ai + 0 j — cos ak) 
(2.18) 

= sin 9 sin a cos <p> + cos 9 cos a — cos 5 

Performing the calculation of the receiver's directivity a similar expression can be ob­

tained; for identical transducers we expect the directivity to be the same, Dr = Dt-

Hence, for identical transducers, the expression of the received signal VTecv can be sim­

plified to 

çï-K pir/2—i<x 
Kecv = F(W) / (W 

J o  J o  
2 J\ (fca sin 5) cos 0^2ikdo sin 6 cos tp 

ka sin S 

(2.19) 

with F(uj) a coefficient that depends on the frequency and fluid medium. The equa­

tion (2.19) is the same as the voltage formula previously obtained by Lobkis et ai. [62] 

(equation (8)). The numerical evaluation of the received voltage can be substantially 

simplified without losing accuracy if the piston beams are replaced by Gaussian beams 

in the received voltage expression, as was shown by Lobkis and Chimenti [65]. Later 

in the chapter the expression (2.19) modified with the Gaussian directivity is used for 

numerical predictions of the pressure field profile. 

Now let us consider the geometry, presented in fig. 2.9, with two focused transducers 

in a con focal geometry. The expression (2.2) will be used to describe the pressure field 
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at point B on the left surface of the sample with velocity profile given by v(9) -• vqP(9). 

Here, the function V(9) is the pupil function that describes the spatial-frequency or 

angular paas-band region and is given by the following relation 

Figure 2.9 Focused piston transducer model. System of two focused trans­
ducers in confocal geometry. 

P(z, y) = < 
1 if \/x3%y2 < I sin 2a 1 if (tt — a) < 9 < (ir + a) 

V ^ or ^ v - - \ 
0 otherwise 0 otherwise 

The element of area on the active surface of the transmitter is dSr = fd9r<hj for a 

cylindrical probe with its axis of symmetry along the y-axis and is dSx = f '2 sin 9xd9rdipT 

for a spherical focused probe. Thus, using the Rayleigh integral, as we have done before, 

the pressure field at point B will have the expression 

Pb = coeff. f V(9x)dST, 
J St P 

where p is the distance between point A located on the transmitter surface, and B. on 

the sample. As previously mentioned, the plane wave decomposition of a spherical wave 
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is given according to Brekhovskikh by 

Pikp ,'jU f2 tc pn/2-ica 
_ _ _ / FAP / e«fe (ZB-zT) cos 0+ifc sin 9[($S-XT) COS <P+(YB-YT) sin Y] g-R ^ 

/9 2?r Jo Jo 

where (xT,yr, %t) are the coordinates of point A and (xb ,Vb ,zb) the coordinates of 

point B, the pressure field at B has the expression 

p p2ir pTç/2—ioo 

JST JO JO 

with C a frequency-dependent coefficient. The pressure field can be rewritten in terms 

of the directivity function as 

/»27t z-Tr/2—ioo 

Pa  =  C/ dy/  (2 .20)  
Jo Jo 

where the directivity function DT(9, ip) is given by 

DT(0 ,^ )= /  p^g- i&^rcose- iksm@(iTC08W-«T=iny)^  (2 .21)  
J ST 

The equations (2.20) and (2.21) describe the plane wave representation of the incident 

pressure field of the transmitter at point B, arbitrarily located on the left surface of the 

sample. After the incident field is transmitted through the sample, the amplitude of the 

pressure field is modified by the transmission coefficient, and the phase is modified by 

the wave's path yielding the expression 

p27t Z» 71-/2—800 

Jo Jo 

The term T(9) is the transmission coefficient of plane waves traveling through the sample 

layer with thickness d. The coordinates of point C, which is located on the opposite 

side with respect to the transmitter, are (xc, Vc, zc)- Let us consider the pressure field 

that arrives on the receiver surface at point D with the coordinates (z«, %/#, za). Its 

expression can be calculated according to equation (2.22) as 

p2ir z>7r/2—ioo 

= C / 4? / Dr(g, sin W. (2.23) 
Jo Jo 
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So far, all the coordinates have been given in the system with the origin at the focus of 

the transmitter — point O (zi, yi, Zj) — (0,0,0). Let us consider that the focus of the 

receiver is located at point (.)' as presented in fig. 2.9, with coordinates (%, %/%, %). If we 

consider also a coordinate system that has its origin at O', the coordinates of point D 

in this system will be (z^, z^). Thus z# = + %2, + 3/2 and z# = + z%, 

and the pressure field can be rewritten as 

/•2-7T /•TT/2—ZOO 

Jo Jo 
x e i kz 'R cos e+ik sin 6(x'R cos v+y'R sin <P) gin $d0_ (2.24) 

As previously mentioned, the received voltage can be obtained through a summation 

of the incident pressure field over the whole area of the receiver 

%ecv — coeff. / (2.25) 

with V{QR) as the pupil function of the receiver. Because of the symmetry of the 

transducer with respect to its acoustic axis, it would be easier to calculate the received 

voltage in the system of coordinates that has its origin in the focal point. The received 

voltage can be rewritten in the form 

2rr îr/2-ioc 

(2.26) 

o o 

where the frequency-dependent coefficient has been neglected and the transmitter direc­

tivity function is shown in equation (2.21). Similarly, the receiver's directivity function 

is given by 

Da(# ,<p)=/  (2 .27)  
/s* 

For the case of a identical spherical focused probe, the two directivity functions are equal 

and can be expressed as 

Dr(#,y) = D#(9,y) = 2%-f / Jo(V sin g sin W(#0 sin 9W. (2.28) 
Jo 
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With the latter formula, the received voltage can be expressed then as 

p-ir/2—icc 

Jo 

where s = \Jx\ + y\ is the separation between the transducers' acoustical axis, z2 is 

the distance between their focuses along the z-axis and F(u) is a frequency-dependent 

coefficient. In the numerical evaluation of the received voltage, the replacement of 

the Bessel functions (piston radiators) with Gaussian beams has been justified by the 

work of Lobkis and Chimenti [65], [26]. The substitution of the piston radiator by a 

Gaussian beam in the expression of the pressure field is not desirable, however, when 

the representation of the side lobe structures of the radiated field is sought. 

Complex transducer point 

With the complex source point (CSP) model, an isotropic spherical wave is converted 

into a Gaussian beam in real space, when the coordinates of the source point are displaced 

into the complex plane. Therefore, the CSP models a finite, real Gaussian beam with 

a point source that has complex location. By reciprocity, measurement of an acoustic 

field with a finite, a Gaussian receiver can also be modeled by a point source receiver 

displaced at a complex location. If both the transmitter and receiver are replaced by 

CSPs , a method known as the complex transducer point (CTP), the combined Gaussian 

directivities are similar to the combination of two piston-like transducers. In fig. 2.10, 

two focused transducers are shown in a pitch-catch setup, arrangement that will be used 

for calculating the received voltage through the CTP method. 

The field of a point source in an unbounded medium with location defined by the 

position vector f is described by Green's function G(r) = exp(ikf • r )/4ttF. The Green's 

function G(r) is the solution of the inhomogeneous Helmholtz equation (V2 + kj)G(r) = 

—8(f) with kf = ui/cf the wavenumber in the surrounding medium. Furthermore, 

in the case when the spherical wave is propagating through a sample plate, because 
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Figure 2.10 Complex transducer point model. Geometry for calculating the 
output voltage in a reflection setup. 

the reflection/transmission coefficient that describes the pressure field after passing the 

sample is well-known for plane waves, it would be easier to use the plane-wave expansion 

of a spherical wave in the expression of the acoustic pressure of a point source. As we 

previously used Brekhovskikh's expansion of an incident spherical wave into plane waves 

for simplicity, for the same reason we now employ the Weyl expansion in the next steps, 

e'^l j. 
2&, 

(2.30) 
4TIT 4TT2 

with the source located in the coordinate system origin and kz  = yfc2 — ft2 — ky  the 

z-axis projection of the wave vector kf and both real and imaginary parts positive 

Re(kz) > 0 Im(kz) > 0. If the source has a different location, for example point 

r~s = (xs, ys,zs), the Weyl expansion is rewritten as 

eikf\r-rs\ f f ( i  

= ̂ II 
e  -ikxxs-ikyy s+ik z\z-z s\ ^ e^kxX+kyy^ dkxdky  (2.31) 

4tt I f— r~s |  4tt2 JJ 12kz  

Let us consider the translation of both transducers from their real position to a 

complex location given by r' —> ?' = r'+d'+ib' for the transmitter and r —» f — r+d+ib 
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the receiver, respectively. The vectors r' = (x', y\ z') and r = (x, y, z) define the position 

of the transducers' aperture centers; the vectors r' and r represent the CTP location; 

the vectors d' and d represent the Gaussian beam waist location relat ive to the aperture 

center for each probe and, finally, the vectors b' and b define the transducers' Presnel 

length and beam direction. 

Let us consider a point source that has been displaced from the real position r§ to 

the complex position fg according to the relation r$ —> rs = rg + d + ib. The distance 

between the source and an arbitrary point (x, y, z) is 

%(r - rs) ' - zg - 4 - + (l/ - ya - 4/ -

For simplicity, let us consider that the real position of the source is at the origin r§ = 

(0,0,0) and both d = (0,0, d) and b = (0,0,6) have only z-axis projections. Thus 

H{r) = ^fx2 + y2 + (z — d — ib)2 = \/x2 + y2 + (z0 — ib)2 with z0 — z — d. If the point 

source field is estimated near the beam axis, we can assume that p2 == (x2+y2) <C (z?y\-b2) 

and the distance TZ(r) can be approximated as 

%(r) = ±sign(zo)(zo - #)-\/l + ̂ &p 

%(r) « ±8ign(zo)(zo - i6) {l + -

Substituting TZ(r) into the point source field equation we obtain 

«%K|r) « (2.32, 
4-ïïTZ(r) 4ir(z0 — ib) 

In the case of the denominator of the fraction l/TZ(r), only the first term in the expansion 

was kept and the second, having p2 /(zq — ib) in its expression, was ignored, but for the 

exponential, the first and second terms were kept and the rest in the expansion ignored 

because they contain pA/(zo — ib)3 and thus can be neglected as being insignificantly 

small. For this approximation to yield accurate results, it is not necessary that the 

higher order terms of the expansion be small, it is necessary only that they do not 

change the result significantly. 
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The exponential exp{—kf[p2/2b(l + zl/b2))} in equation (2.32) for z > 0 controls 

the amplitude of the point source like a Gaussian exp{—p2/W2(zo)} in p near the axis 

p — 0. In fig. 2.11, the pressure field of a transducer modeled with the OTP method 

is evaluated at different positions along the z-axis and compared with the conventional 

piston radiator field. As we expected from equation (2.32), and shown in fig. 2.11, 

the field of a CTP projected on the real plane is nearly identical to a Gaussian, and 

the main lobe field distribution is similar for both models, however, the side lobes are 

not reproduced by the CTP model. In fig. 2.12 the pressure field is evaluated along the 

transducer's acoustical axis and compared with the conventional piston model. Although 

the near field pattern is not reproduced by the CTP model, the general shape of the 

pressure field is similar for both models. 

The Gaussian beam's waist for a 1/e decrease in amplitude is given by W(z0) = 

Woy/l + zl/b2; thus, the term b = kjW2/2 is the critical Gaussian beam scaling pa­

rameter, which is called variously the Fresnel length or Rayleigh range, or for 2b the 

diffraction length, or the confocal parameter. From the expression of W(z0), we can find 

the Gaussian beam waist location relative to the aperture center to be z = d when we 

impose the condition W(z0) = W0. When a transducer is replaced by a point source dis­

placed into the complex plane, the geometrical parameters of the transducer's pressure 

field will need to be matched by those of the point source field. The beam width at the 

waist location W and the distance between the transducer aperture and waist location 

d are given by [94] 

W — W0 ... ^ = and d = „ with /3 = 

F0 is the focal length of the transducer, and Wo is the beam width at the transducer 

aperture, estimated [94], [62] for measurements at a distance smaller or larger than 

Rayleigh distance a2/A to be W0 = 0.752a (a being the transducer radius). 

From b = kfW2/2 and the above expressions the Fresnel length can be written in 
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term of the focal length F0 as 

k,WS 0> kjWlft ba 

2 1 + /32 (k fWS/2F0f +1 (6„/fb)2 + l' 1 j 

with b 0  — k f W o / 2  the Fresnel length of a planar Gaussian transducer. By inspecting 

the equation (2.33) we observe that the parameter b varies with the focal length F0 from 

0 when F0 = 0 (semi-spherical transducer) to 60 when F0 —> 00 (planar transducer). 

The variation of the Fresnel length with the focal length F0 is shown in fig. 2.13 as red 

solid line. Parameter b is strictly monotonically increasing with the focal length of the 

transducer having a point of inflexion at Fq = b0/V3 and an asymptotic limit of 6q as 

Fq approaches 00. 

Similarly, the parameter d representing Gaussian beam waist location relative to the 

aperture center can be written in term of the focal length Fq as 

d =  TTp = (Fo/bo)2 + 1 (2 '34)  

From the above equation (2.34), we find that parameter d increases with the focal 

length F0 to its maximum for F0 = b0 after which asymptotically decreases to 0 as 

F0 approaches 00, as shown in fig. 2.13 as blue solid line. A close examination of the 

equations (2.33) and (2.34) shows that parameters b and d interchange their behavior 

for constant value of the focal length F0 and variable frequency (bo = tt/Wq/c/) from 

the case where the frequency, or 60, is constant while the focal length varies. In other 

words, for F0 —const, and 0 < / < 00, b increases with the frequency to its maximum 

for / = c/Fo/ttWq after which asymptotically decreases to 0 as frequency approaches 

00; d is strictly monotonically increasing with the frequency and has a point of inflexion 

at / = CfFo/TcWgy/S and an asymptotic limit of C/F0/TIW0
2 as / approaches 00. The 

variations of b and d with the frequency has been previously studied by Zeroug et al. [99] 

who published an identical plot as fig. 2.13 but with the behavior of b and d interchanged 

as discussed above. 
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Variation of Fresnel length b and beam waist location d with focal length F0 and 

their influence on 1/e contour plot of the acoustic pressure field for a 10-mm diameter 

focused transducer at 500kHz is shown in fig. '2.14. The 1/e pressure profile is evaluated 

for five focal lengths F0 equal to: 26.5 mm (black), 37.4 mm (red), 64.7 mm (blue), 106.0 

mm (green), 212.0 mm (magenta). The value F0 = 26.5 mm corresponds to the focal 

length of the experimental transducer, F0 = 37.4 mm is the point of inflection for b, and 

for F0 = 64.7 mm d has a maximum d = Fo/2 = bo/2 = 32.4 mm. As expected from 

equations (2.33) and (2.34), and fig. 2.13, the Fresnel length is increasing rapidly with 

the focal length to reach its asymptotic limit b0 when F0 —>• oo for planar transducers. 

The parameter d increases rapidly to its maximum bo/2 when F0 = bo after which slowly 

decreases to zero; d equals zero for planar transducers. In fig. 2.15. the acoustic pressure 

field of a 10 mm diameter focused transducer operating in air at 500kHz is evaluated 

along acoustical axis z and in radial direction p. The 1/e decrease in amplitude is 

presented as a solid contour line along with the schematics for b and d to show their 

physical interpretation. For a Gaussian beam propagating in an elastic medium, the 

beam waist W has a minimum value Wo at one place along the beam, known as the 

beam waist. The axial distance from the point of minimum beam waist Wo to the point 

where the beam diameter has increased to WqV2 is known as the Fresnel length or 

Rayleigh range and the parameter d represent the Gaussian beam waist location relative 

to the aperture center. 

For the geometry presented in fig. 2.10 the real positions of the centers of the aperture 

of both the transmitter and receiver are displaced into the complex plane according to 

r' _» t' = r' + d' + ih' 

r > r = r + d + ?b. 
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Figure 2.11 Comparison of the numerical evaluation of the pressure field 
of a 10 mm diameter planar transducer at 500kHz with 
the CTP (solid) and piston (dotted) model. The pressure 
field is evaluated on the a>axis at three different position 
(z/Xair = 0,10 and 20) along the z-axis that corresponds to 
the transducer's acoustical axis. 

100 130 180 200 

Figure 2.12 Pressure field of a 10 mm diameter focused transducer at 
500kHz evaluated along acoustical axis with CTP (solid) and 
piston (dotted) model 
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Figure 2.13 Variation of Fresnel length b and beam waist location d with fo­
cal length FQ for 10-mm diameter focused Gaussian transducer 
with a 1/e waist width W0 at 500 kHz. 

Distance p (mm) 

Figure 2.14 Variation of 1/e pressure field cross-section with focal length 
FQ for 10 mm diameter focused transducer at 500kHz. The 1/e 
pressure profile is evaluated for focal length FQ equals to: 26.5 
mm (black), 37.4 mm (red). 64.7 mm (blue), 106.0 mm (green), 
212.0 mm (magenta). 
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Distance p (mm) 

Figure 2.15 Pressure field of a 10 mm diameter focused transducer at 
500kHz evaluated along acoustical axis z and in radial direction 
p. The solid black line represents 1 /e contour plot of pressure 
field, d is the beam waist location and b the Fresnel length or 
Rayleigh range defined as the distance over which the beam 
radius spreads by a factor of \/2. 
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or in the expanded form 

x' — x' + d! sin a1 + ib' sin a' y' = y' 5' = z' + d' cos a' + ib' cos a' 

z = % —dsina —%6smo: = z = z + dcosa 4- itcoea. 

The pressure field of the complex source point at the location of the complex point 

receiver is given by 

- f ) = iw#ArG(E - r') = . 

and the voltage generated at the point receiver according to the Auld's reciprocity the­

orem [8] is given by 
gitfTtff-r') 

%ecv(r,w) = 

with A t  and AR the dimensionless strength of the CTP and the 7 a frequency-dependent 

parameter that depends upon the transducers' internal electronics [99]. With the ex­

pansion from equation (2.31) the received voltage can be expressed as 

OO 

^(f,w) = -^wp/74rAa (2.35) 

— OO 

The term R(kx, ky, uj) is the plane-wave reflection coefficient of the sample plate shown 

in fig. 2.10. In the case of a transmission geometry, the reflection coefficient is simply 

replaced with the transmission coefficient, with the rest of the expression remaining 

unchanged. If no sample is in the path of the acoustic beam, the calculations are still 

valid, with the reflection or transmission coefficients equal to unity. 

Equation (2.35) is the expression of the received signal for a specific frequency / = 

uj/2tc sampled at the location r. Now let's consider 9 to be the angle between the 

direction of the wave vector kf and the x-axis the projection of the wave vector on x, 

namely kx — kj sin 0. When a synthetic aperture coordinate scan is performed along 

the ^-direction, the received voltage is sampled and recorded at discrete locations. The 

coherent summation of the signals for different positions along the x-axis is carried out 
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in the form of spatial Fourier transformation. The received voltage corresponding to the 

synthetic aperture coordinate scan in the ^-direction is then given by 

wnfv/IrT, /) n /Y _«kz(-d8ina-«bama!-z')+«kg(ir-^)-«tz(z+z') 
= jy -

~OC 

Because the last term above in brackets is the Dirac delta function, the voltage formula 

becomes 

= -  ̂ jy -
-CO 

K-ecv(^) <^) — 

x2W(Az — k/sin0)dtzdA^, 

4tt 

a iky (y-y ' ) - ik z  (z+z') 
X 

/

„iky(y-y )-ikz(z+z ) 
R(kfsind7 k y ,uj) d k y .  (2.36) 

-OC 

In practice, both transducers have their acoustical axis in the plane of the synthetic 

aperture coordinate scan; therefore, we can simplify the voltage expression for the case 

y = y' = 0. For an isotropic material, the reflection coefficient is not ky dependent; thus 

the expression of the voltage is given by 

Vrecv(k,w)- — / -

—OC 

Furthermore, if the transducers are cylindrically focused with a large angular beam 

spread in the plane of the synthet ic apert ure coordinate scan (x, z) but a small beam 

spread in the (/-direction, the effect of the integration with respect of ky becomes in-

significant. 

The equation (2.36) shows that a synthetic aperture coordinate scan produces only an 

averaged value for the reflected coefficient. In order to measure accurately the reflection 
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coefficient for a pair of arbitrarily oriented spherical transducers, another scan needs to 

be performed in the {/-direction for each or-position of the synthetic aperture coordinate 

scan. The double spatial Fourier transform with respect to both x and y extracts all 

extrinsic influences in the received voltage expression 

OC 

(2-37) 

—OO 

or if the spherical coordinates are employed for convenience to express the wave vector 

projection kx  = kf sini9j cos fa, ky  = kf sin5, sin^ and kz  = kfcosdi. The pair (9i,fa) 

defines a plane wave from the Brekhovskikh's expansion, 

OO 

%ecv(W = (2.38) 

— OO 

VTecv(k.u) = -gin Q i  cos <j>i,kf sin di sin fa, w) 

p—ikf cos0j(i+i') 
 ̂giky sin di cos sin a—ib sin a-x')  ̂ —ikfy' sin#i sin rf>i /g gg 'j 

kfCOSdi 

The latter equation (2.39) shows that the absolute value of the received voltage is 

influenced by the Gaussian beams of both the transmitter and receiver. The reflec­

tion /transmission coefficient can be reconstructed, as will be shown later for a simplified 

case, if an additional scan is performed with the same geometrical setup but without 

the sample. The reflection/transmission coefficient is then obtained as the ratio of the 

received voltages with and without the sample, respectively. When the two-dimensional 

spatial scan is performed, the number of recorded waveforms increases from N to NxM, 

where N and M are the number of steps along the rc-axis and along the y-axis. respec­

tively. The advantage of the two-dimensional spatial scan comes from the fact that all 

transducer beam effects are accounted for, and the received voltage is obtained through 

a 2D spatial and ID temporal FFT applied on the scan data. 

If any (/-dependency is neglected, the problem reduces to a 2D case. Let us adopt 

the notation k = kx  for the z-axis projection of the wavenumber. Thus kz  = k2 — k2. 
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The received voltage is then given by 

^ çikfë—x^—i^kf—k2 (z+z') 

VTecv(x,uj) = ——uip^AtAr I R(k, u>)~ . dk. (2.40) 
4t I  

The spatial Fourier transform of the received voltage corresponding to a synthetic aper­

ture coordinate scan is obtained according to 

OO 

%ecv(W= (2-41) 

— OO 

Therefore, equation (2.41) becomes 

7 sin a-a Bin (z+ZO 
VM = 

^ ji V' 

x / (2.42) 

—OO 

The last part of the expression in equation (2.42), the integral over x, is well known [42] 

to yield 
oo 

— OO 

where 5(t) is the Dirac function. Using the well-known delta function property, 

OC 

/ F(&)d(k - to)dt - F(A%), 

—OO 

the received voltage in wavenumber-frequency domain is given by 

a a ik(—d sin a—ib sill a—£')—»\A/ —k2 (z+z ') 

^  -  ^  /^(Lw)  , 27r6(&-A;sin^dA;, 

— OO 

| gikf sin Ô(~d sin a—ibsina—x' ) —ikf cos 0(i+zz) 

= --umATARR(k, si.»|U) ^ • 

If the relations (2.35) are used explicitly, the received voltage can be written as 

%«cv(&, w) = —sin^, w)PA (2.43) 
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where the V and A contain, respectively, the phase and amplitude dependency of the 

signal, with their expressions given by 

-p __ ç—ikfx' sin 9—ikf{z+z') cos ifc/d(sin 0 sin a+cos 6 cos a) g—ikfd' (sin 6 sin ct'+cos 6 cos a') 

_ g—ikf[x' s ine+(z+2 z )  cos  6+dcos(0—a)+d '  cos(0—a')) 

gfe/b(sin9sma+cosScosa)+fc^i>'(sm6sma'+cos5cosa') gkf[bcos(8—a)+b'cos(9—a')] 
—  — — — —  

kf cos 9 kf cos 9 

Therefore, the absolute value of the received voltage, which is influenced only by the 

term A, has the form 

I çkf\bcos{9—a)+bf cos(6—a')] 

I %ecv(&,w) |= | _R(&/sin#,w) | Hcosg 

= I I . 

The equations (2.43) and (2.44) show the influence of the extrinsic experimental param­

eters on the received voltage. From equation (2.43) it is clear that the vertical position of 

the transducers z and z' influence only the phase, term V. and not the magnitude of the 

received voltage in the wavenumber-frequency domain. Both transmitter and receiver 

have a Gaussian beam profile, which is centered on the beam axis. The orientation of 

the beam is determined by the transducer's orientation angle a and a', respectively. 

The beam width A9 is determined by the Fresnel length b and b', respectively, or by 

the beam waist W for a given medium and frequency A9 = l/y/2kfb = 1 jkfW. Thus 

a larger angular beam spread can be achieved with a smaller Fresnel length. Equation 

( 2 . 4 4 )  s h o w s  t h a t  t h e  i n d i v i d u a l  b e a m  c o n t r i b u t i o n s  o f  b o t h  t r a n s d u c e r s  a f f e c t  t h e  ( k ,  / )  

spectrum of the received voltage. If the transducers are identical, the parameters b and 

b' are equal. In this case, the optimal match between the transducers' beams is obtained 

for the same incident angle a = a'. The condition of having identical transducers with 

the same orientation is not essential for the model of the received voltage but is common 
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in practice. In this case, for identical transducers with the same orientation, the received 

voltage expression is simplified to 

I IWW |= I I , (2.45) 
Z K f  COS v  

which is similar to the expression of the received signal previously derived by Fei [35] in 

equation (3.13). If the receiver has an extremely small Fresnel length b (or the beam waist 

W, b = kfW2/2) such that it vanishes or if it is so small compared to the transmitter's 

Fresnel length that it can be neglected, the contribution of the receiver's directivity 

function to the voltage disappears. When a receiver has its aperture decreased to the 

size of a pinhole by an ultrasonic absorbent mask, its beam waist and Fresnel length are 

decreased also. Then the expression of the received voltage includes only the influence 

of the transmitter's Gaussian beam parameters 

| %«cv(k,w) |S3 I #(&/sin#,w) | e ' [ ^ J. (246) 
Z/Cy COS v 

For the case when both transducers' Fresnel lengths vanish, we expect to have no beam 

influence in the received voltage expression; the only limitation is given by the trans­

ducers' bandwidth and the associated electronics. 

I %ecv(W | a(tySW,w) | . 
COS u 

From the above formula we can conclude that it is possible to obtain the reflection 

coefficient from a single line scan if both transducers have a vanishing Fresnel length. In 

practice, even for a very small aperture size (~ A/4) the Fresnel length does not vanish, 

and its contribution therefore cannot be ignored. Thus, experimentally, the reflection or 

transmission coefficient can best be obtained as the ratio of the received voltages with 

and without the sample. The voltage received in a line scan measurement when there 

is no sample between the probes is called reference voltage Vref and has the expression 

given by equation (2.44) with R — 1. Both scans need to be performed in the same 
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setup geometry in order that the only difference is the reflection/transmission coefficient 

contribution. Therefore, the reflection coefficient is given, according to the equation 

(3.15) derived by Fei [35], by 

| #(&/sW,w) |= (2.47) 
I *ref I 

The transducers' combined directivity function is contained in the reference voltage. 

In order to obtain individual directivity pattern of one of the transducers, the other has 

to be a point source/receiver. In practice, an aperture size less than half of the smallest 

wavelength is enough for a probe to be approximated as a point source/receiver with 

its directivity equal to unity in all spatial directions. For example, we shall consider 

a pair of identical air-coupled transducers such as those used in our experiment; the 

transmitter having an aperture radius of 5.0 mm and the receiver having its active area 

masked by an absorbent material, such as open-cell foam, with its aperture decreased to 

a radius equal to the smallest quarter wavelength in the probes' bandwidth. A typical 

bandwidth for the air-coupled transducers that were used in our experiments is 50 kHz 

to 1 MHz, in which the smallest wavelength is 0.343 mm given by a waveform traveling 

in air at the upper bound frequency 1 MHz. The pinhole mask produces an aperture 

radius approximatively 0.10-0.12 mm for the receiver. In this investigation the aperture 

was found to act as a quasi-point source/receiver from which sound diverges on the 

farther side uniformly in all directions. The product of the wavenumber and effective 

transducer's radius is then A:a=1.0991; thus the angular part of the directivity function 

of this transducer has the shape of an ellipse with the values of major and minor axis 

so close that this ellipse can be approximated by a circle. If the pressure field of one 

transducer is sampled with such a point receiver along and across the acoustical beam's 

axis over the scan grid, its directivity pattern can be measured. 
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Results and discussion 

The directivity patterns of planar and focused air-coupled transducers are predicted 

theoretically with CTP model and compared with experimental results. A comparison 

of the CTP and the conventional model shows that similar results are obtained for the 

received voltage and the pressure field. The CTP model is preferred over the conventional 

piston model because the latter typically requires integrations over the aperture of both 

transmitter and receiver, making the task of numerical computation complicated. The 

CTP model avoids these integrations by modeling the quasi-Gaussian transducers with 

point source/receiver translated into the complex plane. It should be emphasized that 

even though the pressure fields of a piston and a Gaussian transducer are different, 

the received voltage from a pair of piston and Gaussian probes respectively is nearly 

identical [62]. Furthermore, by using multiple complex transducer points placed along 

the acoustical axis rather than a single point, Fei and Chimenti [33] have shown that 

the CTP model reproduces all the features of a piston probe model. 

The numerical evaluations of the CTP model for planar and focused transducers with 

the exact characteristics as the transducers used in experiment are presented in fig. 2.16 

and 2.17. The transducers are a 10 mm diameter planar and a focused transducer with 

the focal length F0=26.5 mm, both operating in air at 500kHz and 700kHz, respectively. 

The pressure profile is color-coded with the dark red color represents the highest ampli­

tudes of the pressure and dark blue the lowest value. The acoustic field was generated 

for a grid of 500x500 points along (z-axis) and across (x-axis) the acoustical axis of 

the transducers. As we expected the beam spread is decreasing with the increase of the 

frequency as predicted by equation (2.32). Although the near field and the side lobes are 

not replicated by the CTP model, the far field and the general pattern of the pressure 

field are well represented and agree with the experimental measurements shown later in 

this section. 
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x(mm) 

Figure 2.16 CTP Model. Pressure field of a 10 mm diameter planar (top) 
and focused (bottom) transducer at 500kHz. A Gaussian trans­
ducer is replaced with a complex point source to model its 
acoustic profile. The dark red color represents the highest am­
plitudes of the pressure and dark blue the lowest value. 
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Figure 2.17 CTP Model. Pressure field of a 10 mm diameter planar (top) 
and focused (bottom) transducer at 700kHz. The focal length 
is .Fo=26.5 mm. The numerical evaluation of the pressure field 
is performed over a grid of 500x500 equally spaced points in 
the range -20 mm to 20mm along the x-axis and 0 to 150 mm 
along the z-axis. 
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Experimental results for the directivity profile measurement 

The directivity pattern of a planar capacitive transducer is measured at several dis­

tinct frequencies in the interval 0.4-1.0 MHz. The transmitter is excited with a five-cycles 

tone burst with an amplitude of 400 Vpp. The quasi-point receiver is fabricated by mask­

ing the aperture of a planar capacitive transducer with an open-cell foam disk, which 

presents a central 0.10-0.12 mm diameter pinhole. The acoustic field of the transmitter is 

then sampled in a line scan along the z-axis perpendicular to the transmitter's acoustic 

axis (z-direction). The length of the line scan is 80 mm, performed in 200 steps with a 

step size of 0.4 mm. In the z-direction, the separation distance between the transmitter 

and point receiver is changed from 20 mm to 152.4 mm (6 inch) in 24 steps of 6.35 

mm (0.25 inch) each. The size of the scan grid is 80x132.4 mm with a cell of 0.4x6.35 

mm. For each position in the scan grid, a waveform is recorded. From the spectrum of 

the waveform the fundamental frequency of the tone burst is then extracted and stored 

according to its grid position. The map of these frequency amplitudes over the scan grid 

produces the directivity pattern of the transmitter. 

In figs. 2.18 and 2.19 is presented the pressure profile of the 5-mm radius planar 

capacitive foil transducer measured in air at 500kHz and 700kHz respectively. The 

initial separation distance between the transmitter and the quasi-point receiver is 20 

mm. The amplitude of the pressure is normalized to its maximum value in the scan. 

The measured scan is oversampled to produce a smooth profile without changing its 

shape or features. 

These experimental results are in good agreement with the CTP model predictions 

shown in fig. 2.16 and 2.17. To demonstrate the close agreement between the numerical 

predictions and the experiment, a comparison of the "cross-sectional" pressure field is 

shown in the top graph of fig. 2.20 for a planar transducer with a radius of a=5 mm 

operating in air at 700 kHz. Although the side-lobes of the field are not replicated by 
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Figure 2.18 The measured directivity pressure profile (2D top image, 3D 
bottom graph) of the planar capacitive foil transducer with a 
radius of a=5 mm at 500 kHz 
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Figure 2.19 The measured directivity pressure profile (2D top image, 3D 
bottom graph) of the planar capacitive foil transducer with a 
radius of a=5 mm at 500 kHz 
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the CTP model, as we expected, the main lobe has the same general shape (Gaussian) in 

both cases: experiment and CTP model. However, the side lobes, of the measured field 

are in relatively good agreement (posit ion and width) with the piston model prediction. 

Furthermore, the bottom graph in fig. 2.20 shows that the experimental pressure field 

along the acoustical axis of the transducer (black solid curve) is in close agreement with 

the model prediction (red dash curve). The small difference in the decay rate of the 

pressure field with the distance z is explain by considering the effect of attenuation of 

acoustic waves in air that is neglected in the model. In conclusion, the same general 

shape is observed, however, the side lobe pattern is not replicated by the single CTP 

model. The experimental results are presented without any enhancement. In all plots, a 

linear scale was used for the amplitude of the pressure field. For the 500 kHz frequency, 

the pressure field decays by 60% in 130 mm, while at 700 kHz the decay is 80%. 

In fig. 2.21 and 2.22 is shown the pressure field of a focused probe (focusing acoustic 

mirror mounted on a planar capacitive foil transducer) measured in air for several distinct 

frequencies in the range 100-800 kHz. The scan grid is smaller than in the case of the 

planar probe, being concentrated on the vicinity of the focal plane. The scan is performed 

with 251 steps of 0.2 mm along the x-axis and 12 steps of 6.35 mm along the z-axis; the 

scan area is 50x76 mm centered on the acoustical axis of the transmitter. 

The measured data is in good agreement with the CTP model. As we expected, the 

measured pressure profile shows little decay of its amplitude in the vicinity of the focal 

plane and its beam width is decreased with the increase in frequency. 

In fig. 2.23, the experimental and predicted spectrum of the received voltage of the 

focused probe sampled in the focal plane are compared. The line scan is performed in 

the focal plane of the transmitter. For each discrete position along the z-axis a time 

dependent waveform is recorded. Through a 2D spatial and temporal FFT, the mea­

sured waveforms are transformed from (space-time) signals into (wavenumber-frequency) 

spectra. The predicted CTP spectrum is modified to compensate for the attenuation of 
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Figure 2.20 Comparison of the experimental acoustic profile with numerical 
prediction for a planar capacitive foil transducer with a radius 
of a=5 mm at 700 kHz. The "cross-sectional" pressure profile 
(top graph) is sampled at a distance z = 20 mm from the 
transducer. The measured acoustic pressure (black solid curve) 
is compared with CTP model (red dash line) and piston model 
(blue dash line). The bottom graph shows the experimental 
(black solid curve) and predicted (red dash line) pressure profile 
along the acoustical axis z. 
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Figure 2.21 The experimental directivity pattern of the focused capacitive 
foil transducer measured in the frequency range 100-400 kHz 
close to the focal plane. 
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Figure 2.22 The experimental directivity pattern of the focused capacitive 
foil transducer measured in the frequency range 500-800 kHz 
close to the focal plane. 
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the ultrasonic waves in air that occurs with increases in frequency. The values of the 

amplitude in both spectra were normalized to their maxima. The amplitude is color 

coded, with dark blue representing the lowest value. Because the evaluation is done 

in a plane normal to the transmitter's acoustical axis, the CTP spectrum is symmetric 

with respect to k = 0. If only a temporal FFT is applied to the measured (space-time) 

voltage, the result is the spatial spectrum measured in the focal plane. In fig. 2.24 is 

presented the experimental (top) and predicted (bottom) spectrum of the received volt­

age of the focused capacitive foil transducer measured and evaluated in the focal plane 

of the transmitter. It can be seen that the CTP model shows good agreement with the 

experiment. The results shown in fig. 2.23 and 2.24 are obtained using equation (2.43) 

and the CTP model. 

Conclusion 

The characteristics of capacitive foil transducers have been studied both theoretically 

and experimentally. An acoustic mirror has been designed for producing focused ultra­

sonic beams in air and produced from CAD drawings by rapid prototyping.. A complete 

analytical received voltage model has been reviewed and explicit expressions have been 

derived for the pressure field and received voltage of both planar and focused probes. 

Extensive model calculations have been performed to investigate the predictions of the 

received voltage model and compare them with the results using conventional piston 

beams. The received voltage model predictions are compared with the experiment in 

this section and in the next chapter. An automated scan system has been developed for 

experimental verification of the model. The experimental results show generally good 

agreement with the received voltage model predictions. The capacitive foil transducers 

have been found to be adequate for air-coupled ultrasonic experiments. 
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Figure 2.23 The measured (a) and predicted (b) spectrum of the received 
voltage of the focused capacitive foil transducer 
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Figure 2.24 The measured (a) and predicted (b) spectrum of the received 
voltage of the focused capacitive foil transducer in the focal 
plane 
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CHAPTER 3 RECONSTRUCTION OF INFINITE PLATE 

DISPERSION SPECTRA BY USE OF FOCUSED 

AIR-COUPLED ULTRASOUND 

Introduction and basic concepts 

Although the application of guided waves to material characterization has been stud­

ied over the past 50 years, only in the past 15 to 20 years have technological advances 

made possible the quantitative evaluation of material properties. Interest in the study 

of guided waves arises from the fact that these acoustic excitations can provide valu­

able information about the mechanical properties of an elastic medium because of the 

waves' dependency on the material's viscoelastic stiffness. The demand for assurance 

of structural integrity, detection of environmental degradation and study of material 

aging can be met by a method that produces rapid and reliable estimation of elastic 

stiffness. Because of their potential and application in fields where safety is a constant 

concern, the focus of most of the studies has been composite materials. An extensive 

listing of the research done in this area of guided waves and their application to materials 

characterization can be found in the review article by Chimenti [19]. 

Materials characterization experiments have been performed traditionally in water 

immersion because of the good energy coupling and the wide availability of broadband, 

highly focused transducers. The development by Kuhl et al. [55] of a capacitive trans­

ducer and the application by Luukkala et al. [68] of non-contact probes to infer the 
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dispersion of guided wave modes in plates by identification of the transmission peaks 

as a function of incident angle can be considered the first steps of modern, quantitative 

air-coupled ultrasonics. Recent advances in the design and performance of air-coupled 

acoustic transducers have significantly improved the characterization of elastic material 

p roper t i e s  by  u l t r a son ic  measurement s  in  a i r .  Sch inde l  e t  a l .  [90]  and  Hutch ins  e t  a l .  

[50] developed an air-coupled, micromachined probe based on electrostatic transduc­

tion, leading to efficient broadband generation and detection of air-coupled ultrasound. 

Ladabaum and Khuri-Yakub [58] designed high frequency micromachined, air-coupled 

transducers with usable sensitivity as high as 11.4 MHz. Hosten and Castaings [48] 

adapted a parabolic mirror to a planar transmitter to generate a wide angular range in 

air and then used a chirp excitation to measure the phase velocity of Lamb modes. More 

recently, Robertson et al. [82] reported the design of a broadband focused capacitive 

foil transducer, and Gan et al. [39] applied pulse-compression techniques for air-coupled 

imaging. 

Safaeinilli e t  a l .  [88], [89] introduced the synthetic aperture coordinate scanning 

technique, which smooths out the interference of the side lobes, and they developed an 

air-coupled method of estimating viscoelastic stiffness in plates, exploiting a detailed cal­

culation to predict the measurable widths and relative heights of successive transmission 

maxima in air. Lobkis et al. [62] studied, theoretically and experimentally, the influence 

of the transducer beam and experimental geometry on the received voltage. Fei and 

Chimenti [31] and Fei et al. [32], [34] demonstrated a technique for rapid reconstruction 

of the transmission and reflection coefficients with a broadband, wide angular range syn­

thetic aperture line scan performed in water immersion. A critical advance in accurate 

material property estimation was accomplished by Lobkis et al. [63], [64], in the sep­

aration of the extrinsic contributions of various geometric elements such as transducer 

size, location, and focal length from intrinsic material properties in the received voltage 

expression. Lobkis and Chimenti [65], [26] demonstrated the similarity of the received 
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voltage for a pair of planar piston and Gaussian transducers respectively, an important 

finding because it allows replacement of a pair of identical reciprocal piston transduc­

ers with a pair of Gaussian probes, with almost no loss of accuracy. This replacement 

simplifies significantly the numerical evaluation of the received voltage. Deschamps [30] 

introduced mathematical means of constructing Gaussian beams through the relocation 

of a real point source to a position in the complex plane. The field of this complex point 

source projected on the real axis is very close to the profile of a Gaussian beam. Zeroug 

et al. [99], [100] introduced a transducer model with both the transmitter and receiver 

replaced by complex source points and used the model to investigate the interaction of 

acous t i c  beams  fo r  va r ious  geomet r i e s  o f  p l ana r  and  cy l indr i ca l  s amples .  Zhang  e t  a l .  

[101], [102] analyzed the effect of the inspection geometry on the measured signal and 

studied the differences between the two- and the three-dimensional case in the received 

voltage for an immersion reflection measurement. 

The dispersion spectra of plate waves in the context of material elastic properties 

evaluation are highly redundant. Rokhlin and Chimenti [84] and Rogers [83] demon­

strated that specific areas of the guided wave modes of a plate predominantly influence 

specific elastic stiffnesses, and Chimenti and Fei [23] and Fei et al. [32] validated the 

technique by producing rapid elastic stiffness reconstruction for reflection measurements 

performed with highly focused broadband water immersed probes in a single synthetic 

aperture coordinate scan. The reconstructed viscoelastic stiffnesses have been obtained 

from the measured received voltage, with an iterative inverse algorithm targeting specific 

portions of dispersion curves. 

In the present study, we show that guided wave modes can be successfully recon­

structed in an air-coupled transmission arrangement by exploiting the broad bandwidth 

and large angular range of our custom capacitive foil transducers [44], [45]. We imple­

mented a new pulse compression technique, which increases the signal-to-noise ratio and 

produces excellent discrimination of the extrinsic contributions. The custom focused 
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probe is manufactured from a planar capacitive foil transducer onto which a stereolitho-

graphic parabolic mirror has been attached. The focused probe was designed to produce 

an approximate line focus beam with an angular range in air of approximative!)' 16°. 

The focused acoustic beam and the large velocity difference between the air and the sam­

ples are exploited to produce the required wide angular range of the phase-match angles 

necessary for rapid reconstruction of the guided wave modes. We should emphasize that 

we have been able to reconstruct the complete guided waves spectra in the transducer 

operating bandwidth with only one transducer orientation angle and a single synthetic 

aperture coordinate scan. Even for water immersion tests, in which efficient energy 

coupling and high focusing can be easily employed, a complete reconstructed spectra is 

nearly impossible to achieve. A phase-match angle of almost 90°, required in some cases 

for the complete map of the guided wave modes, is impossible to obtain, in contrast to 

the situation with air-coupled tests, where this it is not necessary because of the large 

acoustic wavespeed difference between air and samples. Our goal is to demonstrate that 

by measuring the energy leakage at discrete locations along the sample with only one 

fixed orientation angle in the transmission setup, we can reconstruct all the essential 

guided wave modes simultaneously. 

We implemented a digital signal processing technique, introduced by Holland and 

Sachse [43], that has been shown to filter out most of the destructive interference and 

noise sources from the received signal through a cross-correlation operation of the exci­

tation with the received signal. Ideally, the result of the cross-correlation of these two 

signals is exactly the impulse response of the medium that exists between transmitter 

and detector. The autocorrelation of the excitation is a pulse-like function with a spec­

trum given by the bandwidt h of the excitation. Therefore, the time domain excitation is 

transformed by this cross-correlation operation into a pulse-like time domain signal. In 

the experiments, the cross-correlated received signal has additional contributions, other 

than the impulse response of the sample, such as reflections from surrounding objects, 
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but a simple time-domain windowing process will extract only the data of interest (i.e., 

Rayleigh-Lamb energy leakage). A 2D-FFT transforms the measured impulse response 

waveforms into the k f (wavenumber-frequency) spectra. The guided wave modes char­

acteristic to the sample plate are observed as peaks in the amplitude of the received 

voltage spectra for the bandwidth and wavenumber range of the experiment. The band­

width is specific to the air-coupled probes, but the k wavenumber range can be selected 

experimentally by selecting the step size of the synthetic aperture coordinate scan. Good 

agreement between theoretical and experimental results has been found for a wide range 

of materials. 

Theory of the method 

One physical quantity containing the material viscoelastic stiffness information acces­

sible to investigation in an ultrasonic measurement is the transmission (TC)/reflection 

(RC) coefficient. The actual measured quantity is the received voltage, but this pa­

rameter has been shown [32] to be a windowed form of the (TC)/(RC). Even though 

the reflection measurements have the advantage of a single-sided access, the geometrical 

restriction on the path of a synthetic aperture coordinate scan and the large amplitude 

difference (80 — 100 dB) between the specular reflection signal and the leaky Lamb wave 

signal make this approach less desirable for an air-coupled experiment. In the case of 

the transmission geometry, the transducers can be easily aligned to small or large ori­

entation angles, including normal incidence, making it possible to reconstruct all the 

guided mode cut-offs within the transducer frequency bandwidth. Furthermore, for an 

air-coupled experiment, the angular range of the phase-match angle for which all possible 

guide wave modes can be excited at once is less than 20° for most materials. Therefore, 

with a single synthetic aperture coordinate scan, all modes, including the mode cut-off 

frequencies, can be reconstructed at once. The importance of the mode cut-offs derive 
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from the simple relationship the mode cut-offs have with either the longitudinal or shear 

wave velocities in the thickness direction of the plate; hence the associated longitudinal 

and shear stiffness can be determined directly and simultaneously from the measured 

data [95]. 

Our approach in reconstruction of the guided wave modes in plates has been to mea­

sure the energy leakage in a transmission arrangement and to exploit the large angular 

range characteristics of both probes. The propagating guided wave modes are identifi­

able as peaks in the received voltage spectrum. A voltage model has been developed for 

comparison of the experimental results with the theoretical predictions. 

Received Voltage Transducer Model 

The received voltage of a pair of identical reciprocal focused piston transducers has 

been obtained with the received voltage transducer model. The model takes advantages 

of the fact that in the expression of the voltage, the combination of both transmitter and 

detector directivity functions can be replaced by those of two Gaussian beams with little 

loss of accuracy. Therefore, even though the acoustic field of each individual transducer 

is far from being a Gaussian beam, we can treat their combined contribution in the 

formula of the received voltage as though they were Gaussian transducers. This fact by 

itself simplifies significantly the numerical evaluation of the voltage, but in addition, it 

is particularly important because it allows us to simplify the model even further. The 

pressure field of a finite Gaussian probe is well approximated by the projection onto 

the real axis of the field produced by a complex point source. Therefore, a pair of two 

identical reciprocal finite Gaussian transducers can be replaced with a pair of complex 

source and receiver points. The received voltage transducer model uses these results to 

model finite reciprocal piston probes, with the complex point source and receiver in the 

expression of the received voltage. 

If we consider the location of the center of the transducer aperture to be r = ( x ,  y ,  z ) ,  
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the transformation r — > r  =  r  +  d  + ib will translate the location into the complex 

plane. The vector r = (x, y, z) specifies the new location of the complex point source. 

The vector d controls the transducer Gaussian beam posit ion relat ive to the center of 

the aperture, and b determines the Fresnel length and beam direction. Both d and b 

have the same direction, which is the beam propagation direction. The Fresnel length 

or the magnitude of b is given by b = kf\V2/2, with W the 1/e beam width at the waist 

loca t ion  and  k f  t he  f lu id  wavenumber  ( k f  = t u / c f ,  Cf  ve loc i ty  o f  sound  in  f lu id ,  u j  = 2 i r f  

the circular frequency, / frequency). Thompson and Lopes [94] indicated that the beam 

width at the waist location and the distance between the waist location and the center 

of the aperture d have the following expressions: 

W = aW (3-D 

where (3  =  2F 0 / ( k fWçf ) ,  F 0  is the focal length and W0 is the beam width at the transducer 

aperture. The estimation of Wq used in the literature is Wo = 0.757a [94], [62], [32] with 

a the radius of the transducer. Fig. 3.1 presents the geometry used in the experiment 

and in the theoretical prediction of the model. The focused probes are shown in the 

transmission setup. The separation distance between their acoustical axes along the 

plate is Xi. During the synthetic aperture line scan, one probe's position with respect to 

the plate is kept constant while the other probe is moved in the x-direction in equally 

spaced steps along the sample. 

For the geometry shown in fig. 3.1, we replace both transmitter and detector with 

the complex transducer points in order to obtain a simplified expression of the received 

voltage. The spatial coordinates of the point transducers are written as 

x' = x' — d! sin o! — ib' sin y' = y', z' = z' — d! cos a' — ib' cos a' 

z = a; + dsina + iôsino, = z = z + dcosa 4- zbcosa. (3.2) 

Using Auld's reciprocity theorem [7] and the spectral decomposition of the spherical 

waves, the received voltage V(x, f) is obtained for a specific frequency f and discrete 
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Scan 

Sample plate 

Figure 3.1 Received voltage transducer model geometry. The same setup 
has been used for both experimental measurements and theoret­
ical calculations. The system of planar capacitive foil transducer 
and parabolic acoustic mirror has been replaced in the numerical 
evaluation with the equivalent focused probe. 
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receiving position z as 

where T(k X )  k y ,  f )  is the plane waves transmission coefficient. For an infinitely long line 

focus along the y-axis, we can consider the beams to be two-dimensional, located in the 

(x, z) plane. Therefore, any y-dependence of the parameters of the equation (3.3) can 

be neglected, simplifying the voltage expression to 

y(%, /) = -^(w)wpy ̂  %, (3.4) 

where y (u )  contains the frequency response of probes and associated electronics, p /  is the 

dens i ty  o f  t he  coup l ing  f lu id  (p /=1 .2  kg /m 3  fo r  a i r  a t  room tempera tu re  [92] ) ,  T(k x ,  f )  

is the plane-wave transmission coefficient for the plate, and k x  and k z  = ̂ /k j  — k x  are 

the projections of the wavenumber on the x- and z-axes. 

When a Fourier transform is applied to the equation (3.4) and the expression of the 

complex coordinates, equation (3.2), is substituted, the spectrum of the received voltage 

is obtained in the (k, /) domain as 

/

OG 
y(z,/)e-*=dz (3.5) 

•oo 

/) - -"yMw/V f* ^exp{-%&3,(dsina + ibsina - f ) + %(z - f )} 

J —CXD 
k z  

x /y ^ (3 6) 

The notation k  is used in the equations (3.5) and (3.6) for an arbitrary value of wavenum­

ber  p ro jec t ion  on  the  z -ax i s  fo r  wh ich  the  vo l t age  i s  ca l cu la t ed ,  whereas  t he  no ta t ion  k x  

is still the wavenumber projection on the rt-axis allowed to take any value in the interval 

(—oo,4-oo) as variable of integration. The last integral with respect to variable x is the 

unweighted Dirac's delta function 2tt5(kx — k). Therefore the expression for V(k, f) can 

be simplified to 

V ( k ,  / )  =  \ k ,  +  ftsina - i f )  +  i k , { ï  -  ? ) }  ( g  7 )  
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If the wavenumber k  is replaced with k  — k f  sm(9) ,  with 0  = arcsin( k / k f ) ,  the phase-

match angle that corresponds to a particular incident plane wave from the angular 

spectral decomposition, the exponent can be further simplified to 

I |= exp-2t/(&cos(4 - a) + 6'cog(# - a'). (3.8) 

Furthermore, using the approximation cos (û  — a )  =  1 — 2sin2((# — a) /2 )  % 1 — 2( (0  — 

a)/2)2 [42] the exponential is simplified to 

| gi(—fc(dsinQ+i&sina—x ' )+ik z ( z—z ' )  ^—kf (b+b ' ) ^—kfb (6—a) 2 ^—kfb ' (9—a' ) 2  (g g) 

The normalization of the absolute value of the received voltage with the factor e-fc/(6+,)Z) 

is critical in the numerical evaluation of the voltage, as shown by Fei et al. [32], to be 

frequency invariant 

For identical reciprocal transducers having the same radius, focal length and incident 

angle a = a', b = b' and a = a', the received voltage expression is further simplified to 

1  p—2 k fb (6 -a ) 2  

The latter expression shows that the relative position of the transducer with respect 

to the sample plate has an influence only on the phase of the voltage and not on the 

ampl i tude .  The  angu la r  r ange  o f  t he  rece ived  vo l t age  can  be  wr i t t en  in  the  fo rm Ad =  

(1 / y/2kfb) = l/(kfW) and is determined by the transducer Fresnel length b or the 

waist beam width W. Furthermore, A9 can be explicitly written as a function of the 

geometrical transducer parameters 

V ( k , f  )  |= p(u)up , \T ( k , f )  
^—kfb{9—a) 2

e —kf i / (6—a' ) ' 2  

(3.10) 
kf cos# 

3.5367# 
(3.12) 

For high frequency, the square root can be approximated as unity, leading to 

_ 0.376o _ 1.745fb%/ 
(3.13) 
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For example, in the case of a 10 mm diameter transducer with a focal length of 26.5 mm 

operating in air (v/ = 340 m/s) at frequencies higher than 200 kHz, the angular range 

A# is independent of frequency. 

The influence of the extrinsic geometrical parameters on the received voltage is shown 

in equation (3.11) to be present only as a window function, restricting the access to the 

transmission coefficient spectrum to the frequency bandwidth of the probes. This is the 

reason why we employ focused broadband probes for the reconstruction of the guided 

wave modes. The angular range is significantly larger for the directivity function of a 

focused probe than for that of a planar probe, resulting in a wider window function and 

therefore better access to the spectrum of the transmission coefficient. 

The received voltage transducer model has been exploited to produce a numerical 

evaluation of the signal for several samples that were also measured experimentally. 

In fig. 3.2 is shown the theoretical prediction of the spectrum of the received voltage 

for an aluminum 6061 plate with a thickness of 6.68 mm (0.263 inch). The numerical 

evaluation has been performed for 500 equally spaced steps in the frequency bandwidth 

0.01-1 MHz and wavenumber range 0-0.3 mm""1. The maxima of the transmission 

coefficient are shown in red, while the dark blue represents the lowest value for the 

voltage amplitude. The top x- and right y-axis show the phase-match angle in air for 

the given spatial and frequency bandwidth. Because the maximum angle for which the 

energy can be coupled into the sample in air is 7.8°, all the guided wave modes can be 

reconstructed at once with our focused probe. The solid and dotted curves represent the 

dispersive guided wave modes obtained for the same sample in vacuum. The maxima 

in the transmission coefficient correspond to propagating guided waves, and the close 

agreement with dispersive curves shows that air has little influence on the dispersive 

spectrum, because its density is so small compared to the solid. 

Fig. 3.3 presents the numerical evaluation of the received signal for a 5.5 mm (0.215 

inch) Plexiglas plate performed in 500 equally spaced steps in the frequency range 0.01 
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- 0.7 MHz and wavenumber range 0 - 0.4 mm-1. In the case of Plexiglas, the second 

critical angle is close to 17°, but with the choice of a 7° orientation angle for both the 

transmitter and the receiver, it is shown to be possible to reconstruct all the essential 

guided wave modes with a 16° focused probe. A consistent result has been observed 

experimentally for Plexiglas. 

The evaluation of our voltage model performed for a uniaxial glass-epoxy composite 

(SE84LV/EGL/300/400/37%, supplied by S P Systems ) is presented in fig. 3.4 for a scan 

along the fibers and in fig. 3.5 across the fibers. The spatial and frequency bandwidths 

for the theoretical prediction have been chosen to be in the range 0 - 0.5 mm-1 and 

0.01 - 1 MHz respectively, with 500 by 500 equally spaced steps. Several modes as A0, 

So, Ai, S\, A2, S2 from the bottom to the top of the spectrum are reconstructed in 

each case, with the cut-off frequency clearly defined. The spectrum presented in fig. 3.4 

shows that most of the propagating energy is concentrated in the So and Sj symmetric 

modes while for the spectrum presented in fig. 3.5 the energy is more equally distributed 

for the symmetric as well as the antisymmetric modes. The phase-match angle in air is 

plotted in degrees on the top x- and right y-axis. 

We also tested our method on two moderately anisotropic wood samples: a basswood 

plate of 6.350 mm (0.25 inch) thickness and balsa wood plate of 9.525 mm (0.375 inch) 

thickness. In both samples, the wood grain are orientated in the plane of incidence. 

The theoretical values of stiffness that have been used in the numerical evaluation of the 

received voltage and the dispersion spectrum come from the United States Forest Service 

and were published in the 1999 Wood Handbook [37]. These values represent average 

elastic material properties and are given with a ±15% confidence range. Fig. 3.6 and 

fig. 3.7 show the numerical evaluation of the received voltage for a bass and a balsa wood 

plate, respectively. The voltage spectra are evaluated in the 0.01-0.5 MHz frequency 

bandwidth to correspond with the experimental results: at frequencies above 0.5 MHz, it 

has been difficult to detect a transmitted signal through the wood samples. The values 
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of the elastic stiffness of the materials that have been used in the numerical evaluation 

of the received voltage are presented in table (3.1). 

Transmission coefficient reconstruction 

The measured received voltage is obtained in ( x ,  t )  space-time domain as time and 

position dependent waveforms, which have been recorded in a synthetic aperture coordi­

nate scan for discrete positions along the surface of the plate. A 2D-FFT performed on 

the measured data transforms spatial-temporal waveforms into (k. /), the wavenumber-

frequency spectrum. This operation is important because, as the model shows in the 

equation (3.11), the intrinsic and extrinsic components can be clearly identified in the 

spectrum. The pulse-compression technique is employed to boost the signal-to-noise ra­

tio. The remaining signal after the time windowing is the impulse response (transmission 

coefficient) of the inspected medium. The (k, /) spectrum of the received cross-correlated 

signal is precisely the transmission coefficient subject to the bandwidth limitation of the 

excitation and transducers. If the excitation signal in (k, /) domain is given by 

^  g—2 k fb (0—a) 2  

v m ( k ,  /) «= k t a »m • <3'14) 

where the phase is not shown, bu t  still is considered in calculations, the received volt­

age will be given by equation (3.11). The cross-correlation of the excitation voltage 

VexC(x, —t) with the received voltage V(x. t) will be transformed into the product 

%cr(&, /) - y(k, /) W&, /) (3.15) 

with the expanded expression 

I Vm(k, /) |« (i7 I T(k ,  /) I ( - j—fg j f -  (3.16) 

Therefore, the result of the cross-correlation of the excitation and measured signal trans­

formed  in to  the  ( k ,  f )  spec t ra  i s  ob ta ined  a s  |  V c o r ( k ,  f )  cons t  |  T(k ,  f )  | .  
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Wavenumber k (mm-1) 

Figure 3.2 Numerical evaluation of the received voltage in air for an alu­
minum 6061 plate of thickness 6.68 mm (0.263 inch) 

Symmetric 
Antisymmetric 

0.2 

Wavenumber k (mm*1) 

Figure 3.3 Numerical evaluation of the received voltage in air for a Plexiglas 
plate of thickness 5.5 mm (0.215 inch) 
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Wavenumber k (mm ) 

Figure 3.4 Numerical evaluation of the received voltage for a 20-ply uniaxial 
glass-epoxy composite. The scan is performed along the fiber 
direction. 

Symmetric 
Antisymmetric 

Wavenumber k (mm"1) 

Figure 3.5 Numerical evaluation of the received voltage for a 20-ply uniaxial 
glass-epoxy composite. The scan is performed across the fiber 
direction. 
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Figure 3.6 Numerical evaluation of the received voltage for a basswood plate 
with the thickness of 6.350 mm (0.25 inch). The wood grain is 
in the plane of incidence. 

Symmetric 
Antisymmetric 

Wavenumber k (mm ) 

Figure 3.7 Numerical evaluation of the received voltage for a balsa wood 
plate with the thickness of 9.525 mm (0.375 inch). The wood 
grain is in the plane of incidence. 
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Table 3.1 Values of the elastic stiffness of some common materials 

Stiffness (GPa) 

Material 
Cn Cl2 Cis C22 C23 C33 C44 C55 Cee 

Aluminum 6061a 

p = 2.70 g/cm3 
107.50 54.59 54.59 107.50 54.59 107.50 26.45 26.45 26.45 

Aluminum 20246 

p — 2.70 g/cm3 

109.56 55.63 55.63 109.56 55.63 109.56 26.96 26.96 26.96 

Plexiglas6 

p = 1.19 g/cm3 
8.62 4.32 4.32 8.62 4.32 8.62 2.15 2.15 2.15 

Unidirectional 
Aramid-epoxyd 

p = 1.60 g/cm3 
8.64 5.31 5.31 8.64 5.31 8.64 1.76 1.76 1.76 

Unidirectional 
Glass-epoxy6 

SE84LV/EGL 
p = 1.50 g/cm3 

86.60 9.00 6.40 13.50 6.80 14.00 2.72 4.06 4.70 

Basswood^ 
p = 0.37 g/cm3 

11.43 0.33 0.55 0.45 0.41 1.11 0.62 0.51 0.11 

Balsa9 

p = 0.16 g/cm3 
3.60 0.28 0.31 0.19 0.19 3.60 0.13 0.18 0.002 

°A. R. Selfridge Approximative material properties in isotropic materials IEEE Trans, on Sonics and 
Ultrasonics, SU-32,No. 3, 381-395, (1985). 

6A. Safaeinili, O. I. Lobkis and D. E. Chimenti Quantitative materials characterization using air-coupled 
leaky Lamb waves Ultrasonics, 34, 393-396, (1996). 

<A. R. Selfridge [93] 
^Safaeinili et al. [89] 
«SE&4LV/EGL/300/400/37% supplied by S P Systems [5] 
^United States Forest Service, Wood Handbook (1999) [37] 
^United States Forest Service, Wood Handbook (1999) [37] 
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Focused probe parameters 

In the air-coupled experiment, the relatively large difference in wavespeed between 

air and most engineering materials constitutes an advantage. For example, the second 

critical angle in air is ~ 7.8° for aluminum and ~ 18° for Plexiglas, the latter value 

being close to the second critical angle of a large range of composite materials. If the 

orientation angle of the transducers are chosen such that the acoustic beam spread lies 

in the range of normal incidence up to the second critical angle, the incoming acoustic 

energy can be coupled efficiently into the sample. Therefore, with a relatively low focused 

beam, most if not all of the essential guided wave modes can be excited at the same 

time. For the reason just referred to, Fei and Chimenti [31] showed that it is critical to 

have both the transmitter and receiver focused. 

To achieve the required angular range, a parabolic acoustic mirror has been designed. 

A detailed description of the focused probe can be found in the previous chapter. The 

acoustic mirror/planar transducer system has similar characteristics as a cylindrically 

focused probe with a diameter of 10 mm and a focal length of 26.5 mm in air. 

Experimental procedure 

The experimental arrangement used to obtain all air-coupled measurements has been 

a transmission pitch-catch setup, in which one of the probes and the plate have been 

held fixed while the other probe sampled the energy leakage along a linear path parallel 

to the plate surface. Both the transmitter and the receiver have been kept in the same 

plane during the scan for all the experiments. The symmetry of the setup geometry with 

respect to the transducers' acoustical axes plane reduces the problem to two dimensions. 

The problem is therefore simplified to the plane (x, z), where x is the scanning direction 

parallel to the plate and z is the axis perpendicular on the plate defining the separation 

between probes and sample. A synthetic aperture coordinate scan is performed along 
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the plate and the signal is recorded at equally spaced distances. A 2D-FFT reconstructs 

the dispersive spectrum of the plate. 

Experimental setup 

The data acquisition system has been developed for optimal sensitivity, flexibility, 

and robustness, given the specific requirements of air-coupled experiments. This system 

has been designed to generate high amplitude arbitrary waveforms and to support high­

speed data acquisition and processing. The diagram of the setup of the air-coupled 

ultrasonic experiment is presented in fig. 3.8. 
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Figure 3.8 Experimental setup for air-coupled ultrasonic measurements 
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The experimental apparatus is completely computer-controlled through a GPIB data 

bus and an additional custom-built trigger circuit. Data acquisition is performed with 

an internal DAQ card PCI-DAS4020-12 that provides 10 MSamples/s on four 12-bit 

channels as well as digital I/O lines and two 12-bit DACs. This card acts as a fully 

functional oscilloscope with custom signal processing capabilities. The trigger circuit 

manages both the start and end of the RF amplifier gates and the speed of the measure­

ment process. GPIB data bus is utilized for motion control, upload of the waveforms 

from the PC's memory to the arbitrary function generator, and control of the parame­

ters of the gated amplifier and the arbitrary function generator. An arbitrary function 

generator HP/Agilent 33120 generates the custom excitation waveforms, which have 

been uploaded from the computer memory. A high-power, gated amplifier RITEC RAM 

10000 is used to amplify the excitation to the energy level required by an air-coupled 

experiment. Transient signals from the gate triggers are suppressed by dithering of the 

beginning and end of the amplifier's rectangular window and by averaging of the re­

ceived signals. The low-noise, two-dimensional position system Parker MC4000 has a 

step resolution of 0.01 mm. The transducers are capacitive foil probes with a cylindrical 

focus produced by the attached parabolic mirror, as described earlier. 

The measurement process is controlled by the computer through the trigger of the 

start and end of the gate amplifier ramp and by the trigger rate of the measurement. 

The arbitrary waveform is generated in the computer memory by the DAQ program and 

then uploaded into the arbitrary function generator's flash memory. The system removes 

the constraints of using a classic tone-burst excitation signal and makes possible the use 

of any custom-generated waveform. This feature is advantageous because it allows the 

investigator to use synthetically generated waveforms to customize experiments. 

The synthesized waveform is fed to the input of the RITEC RAM 10000 gate am­

plifier and brought to an amplitude level appropriate for air measurements [90]. The 

output signal of the RAM 10000 is applied over a DC bias circuit, to the terminals of the 
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transmitter. The bias is required by the capacitive foil transducer to function; there­

fore. the transmitter and the receiver each has its own bias circuit. The receiver output 

is connected through a charge amplifier to its own DC bias circuit. The reception of 

an ultrasonic wave in air at the membrane will vary the capacitance of the foil dielec­

tric. producing a dynamically varying charge in electrodes. Compared with piezoelectric 

transducers, capacitive foil transducers provide better sensitivity owing to the dramat­

ically lower acoustic impedance mismatch between air and the detector's membrane. 

From the electrical standpoint, the electrostatic transducer can be described as a vari­

able capacitor owing to the changes in distance between electrodes. These variations of 

the electrodes' separations can be understood as the influence of the arriving mechanical 

waves on the thin dielectric film that now acts from the mechanical standpoint, as a vi­

brating membrane. These characteristics of capacitive foil transducers explain that the 

various membrane resonances couple directly into the probe output and are affected by 

the membrane tension controlled by the bias voltage, whereas the air pocket resonances 

must drive the membrane first. Both phenomena are highly influenced by the mem­

brane mass. Therefore, the transmitter has a thicker dielectric film (10.0 — 12.5 //m) 

than the detector, in which the film is about 2.5 — 5.0 jim thick, with an aluminum 

metallic layer of 100 — 500 Â (Mylar and Kepton films were supplied by Sheldahl Inc., 

MN). An aluminum layer is preferred over the gold layer because of aluminum's lower 

specific gravity. 

After the arriving ultrasonic wave produces a variation of charge in the detector, 

this variation is translated into voltage through a charge amplifier Cooknell CA6/C and 

further amplified by a low-noise preamplifier Panametrics 5660B. The received voltage 

is acquired by the PCI-DAS4020-12 card and processed in real time in the computer's 

memory. 

The conventional tone-burst excitation would be inadequate if it were to be used here, 

because the bandwidth and energy requirements cannot be fulfilled simultaneously. The 
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necessary bandwidth would translate to a one- or two-cycle burst, which would not cou­

ple enough energy into the air or sample. A longer tone-burst is too narrow-band to 

excite even a relatively small number of guided wave modes. Pulse excitations, although 

they have significantly larger bandwidth, have the transient signal energy concentrated 

in a short period of time. This characteristic makes pulse excitation inadequate for 

use with air-coupled capacitive foil transducers that require high energy excitations but 

have amplitude and duration restrictions on the transient voltages. Thus, in our exper­

iment, the excitation signals, which are subject to amplitude and duration restrictions, 

must have broad bandwidth and carry high energy. The amplitude constraint is due to 

the dielectric breakdown, the mechanical and electrical limitation of the metal film and 

backplate. The duration of an excitation is limited by the duty cycle of the gated am­

plifier to approximative^ 200 /is. The excitation signal is custom designed to fulfill the 

requirements of broad bandwidth and high energy injected into the medium throughout 

the allotted time period. The signal found to provide the best results was a computer-

generated random phase noise, which has been designed to have a bandwidth of 50 kHz-1 

MHz and a length of 170-180 /xs with a cosine ramp window [79]. In fig. 3.9, a typical 

random phase noise excitation (i.e., spectrum, phase, and time domain waveform) signal 

is presented. The absolute value of the signal is designed to have a broad bandwidth 

and is combined with the randomly generated phase to produce the complex spectrum 

of the excitation. An inverse FFT transforms the complex spectrum into time domain 

waveform as presented in the third graph of fig. 3.9. 

Data acquisition and processing 

A serious drawback of any air-coupled measurement is the inherent low signal-to-noise 

ratio that makes difficult the extraction of the useful information from the measured 

signal. To improve the signal-to-noise ratio of the measurements, a pulse-compression 

technique, introduced by Holland and Sachse [43], and associated with high-speed data 
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Figure 3.9 Random phase noise excitation: first two graphs represent the 
absolute value and phase of the signal spectrum (bandwidth 50 
kHz-1 MHz), third is the actual time domain signal with a length 
of  200  f i s .  

acquisition and real time processing has been adapted to this experiment. The synthetic 

aperture coordinate scan technique, introduced by Safaeinili et al. [88], [89], has been 

used to reconstruct the plane-wave transmission coefficient in air-coupled experiments. 

The measurement process is controlled by an PC running Linux. The acquisition and 

real-time processing software run as a server application, allowing flexible control over 

the network. The random-phase noise signal is customized on the PC and loaded via 

an IEEE-488 interface into the arbitrary function generator memory. For the rest of the 

measurement, this signal is used as the excitation. The output of the function generator 

is further amplified by RITEC RAM 10000 to 200-250 Vpp for a Mylar foil with 12.5 

/xiri thickness and -225 V DC bias. After traveling through the medium, the ultrasonic 
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signal arrives at the receiver membrane and is converted by the capacitive foil transducer 

into a varying charge. The detector has a 2.5-/mi Mylar film and 100 V DC bias. A 

charge amplifier Cooknell CA6/C transforms and amplifies the charge into voltage that 

is further amplified from 40 or 60 dB by a low-noise preamplifier Panametrics 5660B. The 

received voltage is then acquired by the acquisition card in the computer and recorded 

for either real time or post processing. 

At any given moment of the measurement process, the following waveforms are stored 

in the computer's memory: the initial arbitrary waveform, the output of the arbitrary 

waveform generator, the output of the gated amplifier and the received signal corre­

sponding to a specific location along the plate. We denote the broadband excitation 

signal (random phase noise) by s(t). This signal s(t) is stored and monitored at the out­

put of each component before being applied to the transmitter. The impulse response 

of  t he  sys tem h( t )  i s  a s sumed  to  be  l inea r  and  t ime  inva r i an t .  The  rece ived  s igna l  r ( t )  

must then be given by [79] 

r(t) = a(t)®/i(t), (3.17) 

where '<g>' defines the convolution operator. The goal is to find the impulse response h( t )  

of the measured medium. By performing the cross-correlation of the excitation signal 

s(t) with the received signal r(t), we can prove that the result is precisely the impulse 

response  o f  t he  inspec ted  med ium res t r i c t ed  t o  the  bandwid th  o f  t he  exc i t a t ion  s ( t ) .  

The measured signal r ( t )  is cross-correlated with the excitation signal s ( t ) and the 

result is similar to that obtained by performing the convolution of r(t) and s(—t). There­

fore, we can write 

r(t) ® s(—= (g(t) ® &(t)) ® a(—t). (3.18) 

Rearranging the right side of the equation (commute and reassociate), we obtain 

r(t) ® a(—t) = (a(t) ® a(—Z)) <8 &(t). (3.19) 
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The result of s(t)<S>s(—t) is a zero phase signal (equivalent to S(f)-S(f) in the frequency 

domain). Because s(t) 0 s(—t) is a broadband signal with zero phase, it can be modeled 

as an impulse S(t) in the time domain. Therefore the correlation between the received 

and excitation signals will be given by 

r(2) ® a(—t) = f (t) gi A(t) = /i(t) (3.20) 

for the bandwidth of s(t) [79]. 

Figure 3.10 Typical results for impulse response h(t) measurements with 
the pulse-compression technique. From the top: random 
phase noise excitation, received signal, impulse response of the 
medium. 

An example of the data processing method is illustrated in fig. 3.10. The top graph 

shows the excitation s(t), a typical random-phase noise signal with a bandwidth of 

approximative!}' 1 MHz and a length of 200 fis. To model the received voltage, r(t), 
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the following signals have been summed: the excitation s(i), the 100 fis delayed ex­

citation (s(t + 100 /is)), and a random generated white noise. The first term in the 

simulated received voltage corresponds to the electro-magnetic interference in the de­

tector, whereas the second term represents the response obtained from the excitation 

propagating through the inspected medium. The peak-to-peak amplitude of the white 

noise signal has been chosen to have a value ten times higher than the excitation s(t) to 

illustrate an air-coupled ultrasonic measurement in which the signals are buried in the 

noise. The received voltage has been simulated to correspond to 100 trigger events. A 

different white noise signal has been randomly generated for each event. The bottom 

graph in fig. 3.10 shows the average of the cross-correlation of the received signal r(t) 

and the excitation s(t). The number of averages, 100, corresponds to the number of trig­

ger events. A good signal-to-noise ratio is observed in fig. 3.10, just as with the actual 

experiment. The first peak, a quasi-pulse signal, is located at t = 0 s and corresponds 

to the initial excitation detected as electro-magnetic interference in the receiver. The 

second peak, related to the delayed excitation s(t + 100 /is), is located at t — 100 /is 

and simulates the impulse response h(t) of the inspected medium. The h(t) signal con­

tains the transmission coefficient information, which is used in the reconstruction of the 

dispersion curves. 

The statistical analysis of a time series typically answers to questions about the 

randomness of the data, the presence of underlying trends, cyclic or seasonal effects, 

uncertainity of typical value and reasonable predictions of future observations. A com­

monly used test for checking the randomness in a data set is the autocorrelation plot 

[15]. The randomness is ascertained by computing autocorrelations for data values at 

varying time lags. If data is random we expect the autocorrelations to take values near 

zero for all time lag-separations otherwise for one or more autocorrelations that are sig­

nificantly non-zero or show ident ifiable trends the data is considered non-random. The 

autocorrelation plot is a graphical technique but it has been exploited in a test proposed 
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by Ljung and Box [61] to produce a quantitative test for randomness. The Ljung-Box 

test also referred to as "portmanteau" test is based on the autocorrelation plot, but in­

stead of testing randomness at each distinct lag, it tests the "overall" randomness based 

on a number of lags. 

The typical assumptions for a data set tested for randomness are: the data points 

are equally-spaced, there are no missing values in the set and the number of samples is 

large. All of these assumptions are true for the random-phase data set that is the object 

of our analysis presented in the second graph of fig. 3.9. Furthermore the data set is 

stationary and ergodic being invariant time invariant and having its time and ensemble 

averaging equivalent. In other words a single-time recording of the process contains all 

possible statistical variations of the process, no additional information can be gained 

by observing this ensemble of sample signals over the information obtained from one 

recording of the signal. 

To analyze the random-phase signal for randomness we employed the United States 

National Institute of Standards and Technology Dataplot statistical software [71]. Two 

tests have been performed on the random-phase data set: first being the qualitative 

autocorrelation plot shown in fig. 3.11 and second the quantitative Ljung-Box test with 

the result presented in table. 3.2. 

The conclusions that can be drawn from this plot (fig. 3.11) are: first that with the 

exception of lag 0, which is always 1 by definition, almost all of the autocorrelations 

fall within the 95% confidence limits, and second there is no apparent pattern in the 

values of the autocorrelations. This absence of a pattern such as monotonie increase or 

decrease or cyclic change of sign, being an indication we expect to see if the data are 

in fact random. One lag outside the 95% and few others slightly at the border of 99% 

confidence limits do not necessarily indicate non-randomness. We might expect about 

one out of twenty lags to be statistically significant due to random fluctuations. As a 

technical note, the confidence interval is simply the proportion of samples expected to 
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be contained in that interval centered on the ensemble mean value. Furthermore the 

result of Ljung-Box test applied to the random-phase data set and presented in table. 3.2 

proves that in fact the data is random. 

The geometric arrangement of the experiment is presented in fig. 3.12, where the 

transmitter and receiver are shown with the parabolic acoustic mirror in place, in a 

transmission setting. One of the transducers is held fixed during the synthetic aperture 

coordinate scan, while the other is sampling the acoustic field leakage along the plate. 

The positions of both transducers have been kept in the same plane (x, z), plane of 

incidence, at all times during the measurement. The ^-direction is pointing along the 

plate while the z-direction is perpendicular to the sample. Because the transducers are 

cylindrically focused with their focal line along the y-axis, the ̂ /-dependence is neglected, 

and the problem is reduced to one of two-dimensions. The receiver voltage is recorded as 

a time-dependent signal for discrete coordinate positions on the line scan along the plate 

(^-direction). This synthetic aperture coordinate scan technique has been introduced by 

Safaeinili et al. [88], [89], and has been used by Zhang [104] and Fei [35] to reconstruct 

the plane-wave transmission/reflection coefficient in water- and air-coupled experiments. 

The spatial scan step Ax size defines the maximum value of the wavenumber k 

accessible for inspection; Ax is much less than the smallest wavelength of the guided 

wave modes of interest. The value of the step size of the line scan Ax was chosen in 

the range 0.1 mm < Ax < 0.3 mm. The total number of steps in the x-direction varies 

from 50 to 300 steps, depending on the elastic properties of the material. The received 

voltage is digitized into 10000 points of data at a sampling frequency of 10 MHz, with 

0.01 jis/div and is averaged depending on the material from 100 to 6000 times. The 

time window in which the RF signal is acquired and the spatial scan range Ax are set 

to be large enough to record all the receiver output signals of significant amplitude. The 

received signals outside of the time and spatial ranges of the scan are typically smaller 

than 2% of the largest signal amplitude in a scan and are therefore ignored. 
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Table 3.2 Output of the Ljung-Box randomness test performed on the ran­
dom-phase signal with Dataplot statistical software 

Ljung-Box test for randomness 

1. Statistics 

Number of observations 186 
Lag tested 45 
Lag 1 Autocorrelation -0.5584814E-01 
Lag 2 Autocorrelation 0.2670012 
Lag 3 Autocorrelation -0.9577191E-01 
Ljung-Box test statistic 44.42097 

2. Percent points of the reference chi-square distribution for Ljung-Box test 
statistic (reject hypothesis of randomness if test statistic value is greater that 
percent point value) 

0 % point 0.000000 
50 % point 44.33512 
75 % point 50.98495 
90 % point 57.50530 
95 % point 61.65623 
99 % point 69.95683 

3. Conclusion (at the 5% level) 
THE DATA ARE RANDOM. 
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For each position in the synthetic aperture coordinate scan, the signal is digitized 

and recorded. The received voltage is cross-correlated with the excitation signal and the 

result averaged for a number of trigger events. An example of data processing with the 

pulse-compression method previously explained is shown in fig. 3.13. The waveforms 

shown in different colors in fig. 3.13 are recorded at seven evenly spaced locations. The 

electro-magnetic interference in the receiver is observed at t = 0 s, while the leakage of 

the Rayleigh-Lamb waves can be seen in the range 200 — 500 fis. The signals detected 

later than 500 fis are reflections of acoustic waves from surrounding objects. To extract 

the part of the signal related only to the tested sample, a time window for the interval 

200 — 500 lis is applied. A 2D-FFT transforms the temporal-spatial signals into the 

wavenumber-frequency spectra. The peaks in the spectra are maxima of the transmission 

coefficient and correspond to the guided wave modes in the sample. 

1 

0.5 

0 

- 0 . 5  
0 

Figure 3.11 Statistical analysis of the random-phase signal: Autocorrela­
tion plot. The x-axis represents the numbers of lags performed 
and the y-axis the values of the autocorrelation. The dotted 
curves is the 99% confidence interval while the dashed curve is 
the 95% confidence interval. 
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Parabolic acoustic mirrors 

Sample 

Capacitive foil transducers 

Figure 3.12 Air-coupled experimental geometry. The parabolic acoustic 
mirrors are built with a stereolithographic process (rapid pro­
totyping) directly from a SolidWorks CAD model. 
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Figure 3.13 Typical impulse-response sampled at discrete locations along 
the plate. Each waveform is obtained as the result of the 
cross-correlation of the excitation with the received signal. 
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Results and discussion 

The technique described in this chapter has been used in the reconstruction of the 

dispersion spectra for a variety of materials such as Plexiglas and aluminum, composite 

fibrous and layered materials, and wood. Critical parameters of the measurements are 

the path length over which the synthetic aperture coordinate scan is performed [104], 

[35] as well as the number of steps. The scan length determines the resolution on the 

wavenumber axis, while the number of steps determines the number of points on both 

x and k axis. The spatial step size or the spatial sampling frequency controls the maxi­

mum wavenumber obtainable. For each particular sample, the excitation waveform has 

been customized to achieve the maximum bandwidth, amplitude and spectral resolution, 

enhancing the unequivocal identification of the guided wave modes. Even though for 

certain samples, such as aluminum, a larger number of averages of the cross-correlated 

signal have been required, for most composites the reconstructed dispersion spectra have 

been obtained in real-time with very few averages. 

Reference dispersion curves have been produced and plotted on top of the mea­

surement results to ease comparison of the experimental results with the theoretically 

predicted results. No image enhancement has been performed on the experimental data. 

Isotropic samples 

The spectrum of the received voltage for a Plexiglas plate with a thickness of 5.5 mm 

(0.215 inch) is shown in fig. 3.14. The excitation signal has a broadband spectrum of 

about 800 kHz, with the starting frequency at 100 kHz. The incident angle has been set 

to a value of 7°. The second critical angle for Plexiglas is 18°. The measured spectrum 

reconstructs almost the entire phase-match angle range because the incident plane waves 

are spread from normal incidence to about 15° or 16°, and hence are very close to the 

angle of total reflection. Several guided wave modes are well defined and shown in red 
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color in fig. 3.14. These modes correspond (from bottom to top) to the A0, S0, Ai, Si, 

A2, S2, S3, and A3 modes. The guided wave modes, as the first symmetric mode S0, that 

have large out-of-plane displacements [95] are shown to couple energy more efficiently 

to a pressure wave in the air as shown by their higher brightness in the transmission 

coefficient spectrum. Good agreement with theoretical dispersion curves, Rayleigh-Lamb 

modes, that were calculated from waveguide theory, and numerical evaluation of the 

model received voltage model, that is presented in fig. 3.3, is observed because air is 

a tenuous medium. The low aerial density, pair — 1.2 5/m3 [?], which produces high 

losses and weak signals, causes large acoustic impedance mismatches at the air-sample 

interfaces, such as air-aluminum Zair—0.0004 MRayl and Zaiuminum=17.33 MRayl. This 

difference implies also that the leakage losses of a propagating plate wave are generally 

negligible and the transmission maxima practically coincide with the Rayleigh-Lamb 

modes of the plate. 

The RF signal has been sampled for a path along the x-axis corresponding to a syn­

thetic aperture coordinate scan with a length of 160 mm and a step size of Ax=2 mm. 

The scan started at X\ = —20 mm and ended at x§o = 140 mm in the range in which the 

received voltage showed a relatively good, approximately 30, signal-to-noise ratio. Out­

side this interval, the signal has been found to have a value too low (less than 2% of the 

largest signal amplitude in a scan) to provide any additional information and therefore 

has been ignored. Zero position in the scan corresponds to the situation where the probes 

have their focus at the same location on the x-axis. Even though the signal is much 

smaller in the negative x-axis direction (x, < 0 for the geometry shown in fig. 3.1), it still 

provides useful information, especially for those modes with negative group velocities, 

for example Si. Group velocity of a guided wave mode at a particular wavenumber-

frequeney point on the dispersion curve is determined by measuring the slope du/dk of 

the dispersion curve at that particular point (k, f ). The Si mode presents a negative 

group velocity between its cut-off (k ~ 0) and its minimum, as shown in fig. 3.14. The 
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spatial FFT produces both a positive and a negative wavenumber spectrum, and the 

negative group velocities modes can be extracted from the negative side of the spatial 

spectrum. The dotted curves plotted on top of the measured (k, /) spectrum correspond 

to the theoretically calculated guided wave modes, using the published average value of 

the stiffness of the Plexiglas. Although no fitting or matching has been performed on 

the measured data, good agreement between the experiment and the theory is seen. 

The spectrum of the received voltage for an aluminum 6061 plate with a thickness of 

6.68 mm (0.263 inch) is presented in fig. 3.15. This measurement has been significantly 

more time-consuming than the Plexiglas study because of the larger number of averages, 

6000 to 9000, performed on the received cross-correlated signals, which has been required 

for reconstruction of the guided wave modes. The signal-to-noise ratio of the received 

voltage is approximately 20 in this experiment. The synthetic aperture coordinate scan 

was performed along the a>axis for a 300 mm total length, starting at X\ — —25 mm 

and ending at xi$q = 275 mm, with a step size Ax = 2 mm. The orientation angle was 

chosen to be 2° such that the angular range of the incident beam (—6° < AO < 10°) 

excites the essential guided wave modes in aluminum plate (with 7.8° second critical 

angle). These settings allowed access to the wavenumber up to 0.5 mm-1 with a spatial 

spectral resolution of (1/300) mm"1. A common technique to improve the appearance 

of the spectrum without adding any new information has been zero padding of the 

data. The dashed and solid curves on the figure are calculated by use of published 

values for the elastic parameters of the aluminum [93] and are presented in table 3.1. 

Each of the peaks in the voltage spectrum corresponds to a different guided wave mode, 

their brightness is related to particular guided wave mode capacity to couple energy 

efficiently into air shown as a higher brightness in the transmission coefficient spectrum. 

In addition, incident beam orientation and focusing as well as transducer bandwidth 

influence the intensity of the measured guided wave modes by limiting the measurement 

region of the voltage spectrum. Good agreement of the experiment and the theory as 



www.manaraa.com

142 

10 

05# 

X 
S 

5 

,0.251 
g" 

#15 

ko 

Symmetric 
Antisymmetric 

Wavenumber k (mm ) 

Figure 3.14 Measured voltage spectra for a Plexiglas plate. The curves 
represent the simulated antisymmetric (solid) and respectively 
symmetric (dashed) guided wave modes for the same plate in 
vacuum. 
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Figure 3.15 Measured voltage spectra for an aluminum 6061 plate. The 
curves represent the simulated antisymmetric (solid) and re­
spectively symmetric (dashed) guided wave modes for the same 
plate in vacuum. 



www.manaraa.com

143 

presented by the numerical evaluation of the received voltage model in fig. 3.2 is shown. 

The very small difference between the locus of the transmission coefficient peaks and 

the dispersion curves is a result of the usage in the theoretical model of average elastic 

stiffnesses published in literature and presented in table 3.1 rather than the actual values 

of a specific sample. 

Composite material plates 

The above method certainly not limited to isotropic materials such as Plexiglas and 

aluminum can be extended to anisotropic materials especially composites. Because of the 

interest in evaluation of elastic properties of composite materials, two types of composite 

- fibrous and a layered - have been inspected with our method. The first sample is a 

uniaxial glass-epoxy composite (SE84LV/EGL/300/400/37%, supplied by S P Systems 

[5]). The measurements have been performed on a path along, and across, the direction 

of the fibers. Fig. 3.16 shows the spectra of the received voltage measured along (top) 

and across (bottom) the fibers. Because the orientation angle has been set to 6°, the 

incident angular range is about 14° from normal. The composite is 3.3 mm thick and has 

been constructed from 20 pre-preg plies. The scan has been performed along the z-axis 

in the fiber direction starting at x\ = —36 mm and ending at x86 — 136 mm and across 

the fibers from x\ — 20 mm to x50 = 80 mm, with a step size of Ax = 2 mm. The length 

of the scan across the fibers has been limited by the size of the sample. This decrease 

in scan length produced a noisier, and hence lower quality, spectrum. The custom 

excitation signal used was a random phase noise with a bandwidth (100 kHz-900 kHz). 

The posit ions of peaks of the measured signals (peaks in the transmission coefficient) are 

in nearly the same locations as the dispersion curves and in excellent agreement when 

compared with the numerical evaluation of the model presented in fig. 3.4 and 3.5. As 

already stated, the tenuous nature of air, the low aerial density, is responsible for the 

fact that the peaks of the transmission coefficient and the Rayleigh-Lamb modes of the 
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medium coincide. 

The layered composite plates, aluminum-aramid(90°) ARALL1 and ARALL3, are 

made from successive aluminum and aramid(90°) layers: ARALL1, with 5 aluminum 

and 4 aramid(90°) layers, and ARALL3, with 4 aluminum and 3 aramid(90°) layers. In 

fig. 3.17 the measured spectra are shown for the ARALL1 (top) and ARALL3 (bottom) 

layered composites. For the theoretical dispersion curves calculation, the values reported 

by Lobkis [63] have been used. The scan for the ARALL1 sample was performed for 200 

mm along the a;-axis, from x\ = —80 mm to z10o = 120 mm with a step size of Ax = 2 

mm. The orientation angle was set to a = 3° with the incident beam having an angular 

spread —5° < A9 < 11°. The ARALL3 sample has been scanned from x\ = —60 mm 

to zioo = 140 mm, with the same step size of Ax =- 2 mm. The incident angle in this 

case has been set to a = 5° (—3° < AfJ < 13°). Only two guided wave modes are shown 

on the spectrum of the measured data for the ARALL3 composites, while for ARALL1 

some higher order modes are observed. The small number of dispersive modes shown 

in the bandwidth of the probes is explained by the low value of the sample's thickness. 

Still, the results shown for the A0 and S'0 are in clear agreement with the theoretical 

dotted curves. 

Moderately anisotropic samples - wood plates 

Any wood sample has an inherent anisotropy and different elastic properties from 

point to point, showing great variations even for samples taken from the same tree. The 

theoretical values of the stiffness of such materials will be only estimates; actual values 

vary from sample to sample and even along the same plate. Two wood samples have been 

selected for inspection: a basswood plate 6.350 mm thick and a balsa wood plate 9.525 

mm thick. In both samples, the wood grain are orientated in the plane of incidence. 

The acoustic impedances of both basswood and balsa wood are very close to that of 

air, producing a good energy coupling to the samples. Both wood samples showed large 
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Figure 3.16 Measured voltage spectrum for a uniaxial glass-epoxy com-
posite plate. The scan is performed along (top), and across 
(bottom), the fibers direction. The curves represent the simu­
lated antisymmetric (solid) and symmetric (dashed) dispersive 
guided wave modes. 
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Figure 3.17 Measured voltage spectrum for layered composite plates: AR-
ALL1 (top) arid ARALL3 (bottom). The curves represent the 
simulated guided wave modes for the same plate in vacuum. 
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Figure 3.18 Measured voltage spectra for basswood (top) and balsa (bot­
tom) wood plates. The curves represent the predicted anti­
symmetric (solid) and respectively symmetric (dashed) guided 
wave modes. 
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attenuation of ultrasonic waves for frequencies above 500 kHz. The propagating guided 

waves were damped significantly along the plates (z-axis), making it difficult to perform 

long synthetic aperture coordinate scans. 

In the case of basswood sample, the received voltage has been sampled for a path 

along the z-axis corresponding to a synthetic aperture coordinate scan with a length of 

270 mm and a step size of Ax = 3 mm. The scan started at x\ = —30 mm and ended at 

z90 = 240 mm in the range in which the received voltage showed a relatively good signal-

to-noise ratio. The custom excitation signal has been designed to have its spectrum in 

the bandwidth 50 kHz to 600 kHz. In the case of the balsa wood, the line scan along 

the x-axis has been performed for a length of 240 mm (starting at X\ = —20 mm and 

ending at xSo = 220 mm) with a Ax = 3 mm step size. The transducer orientation angle 

has been set to the value of a — 5°. In spite of the significant difference between the 

measured spectra and the theoretical model (fig. 3.6 and 3.7), the inspection method 

has been shown to provide important information about guided wave mode structure 

for each tested wood sample. It is important to emphasize that the values used in the 

model (1999 Wood Handbook of the United States Forest Service [37]) are estimations 

only, and the measured voltage spectra show a large number of guided wave modes to 

produce a good reconstruction of the actual values of elastic stiffness. 

Estimation of the viscoelastic stiffness 

The importance of experimentally determining the effective elastic property of ma­

terials, especially those with a complex microstructure such as composite materials is 

drawn from the demand for assurance of structural integrity, detection of environmen­

tal degradation and study of material aging. Knowledge of mechanical properties, i.e., 

elastic stiffnesses, and environmental impact on these properties is crucial to good engi­

neering design. 

To determine the elastic property of thin plates, the plane-wave transmission or reflect-
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tion coefficient spectra have been commonly used by numerous researchers, as Chimenti 

extensively listed in a recent review [19]. Hosten et al. [47] exploited inhomogeneous 

waves to study lossy media, much as Weaver et ai. [96] used point sources to generate 

transient waves to characterize composite laminates. To infer the viscoelastic stiffness of 

plates, without using group-velocity methods, Rokhlin and Wang [85] used time-of-ffight 

in a through-transmission arrangement. 

A critical contribution has been made by Rokhlin and Chimenti [84], and by Rogers 

[83] who demonstrated that specific areas of the plate dispersion spectrum have a pre­

dominant impact on specific elastic stiffnesses. Karim et ai. [51] have used a simplex 

optimization algorithm to reconstruct the elastic stiffness from a full set of the reflection 

dispersion data. A similar approach has been taken by Sachse and Pao [87] for mea­

suring the group and phase velocities of dispersive Lamb waves, by AHeyne and Cawley 

[3] for analyzing the scattering signals from defects in plates, and by Hosten et al. [46] 

for evaluating elastic constants in composite materials using air-coupled ultrasonic bulk 

waves. 

Safaeinilli et al. [88], [89] developed an air-coupled method of estimating viscoelastic 

stiffness in plates, exploiting a detailed calculation to predict the measurable widths and 

relative heights of successive transmission maxima in air and are first to introduce the 

synthetic aperture coordinate scanning technique to extract from the measured signal 

the interference of the side lobes. Chimenti and Fei [23] and Fei et al. [32], [34]. 

developed this technique even further by producing rapid elastic stiffness reconstruction 

for reflection measurements performed with highly focused broadband water immersed 

probes in a single synthetic aperture coordinate scan. The reconstructed viscoelastic 

stiffnesses have been obtained by these researchers from the measured received voltage, 

with an iterative inverse algorithm targeting specific port ions of dispersion curves. Their 

approach has been to begin the viscoelastic stiffnesses reconstruction from areas of the 

dispersion curves that depend heavily on one or two constants and to continue to add 
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data from other parts of the dispersion curves where additional constants can be easily 

extracted, until all relevant viscoelastic stiffnesses have been obtained with the desired 

error margin. 

Conclusion 

The broadband large angular range synthetic aperture coordinate scan technique 

has been applied to the reconstruction of the dispersion guided wave modes in an air-

coupled ultrasonic experiment. A parabolic acoustic mirror has been designed to produce 

sufficient angular focusing to be able to excite and detect, through the phase-match 

coupling, most of the guided wave modes in the frequency bandwidth of non-contact 

probes. A pulse compression technique has been applied to the received voltage and 

demonstrated to extract only the impulse response of the inspected medium. This 

DSP technique has been shown to be a valuable tool in the process of filtering out the 

interference and noise sources. 

A theoretical model for the received voltage has been adapted for comparison with the 

experiment. The experiments have been performed on both isotropic and anisotropic 

sample plates. The predicted locus of the guided wave modes for the tested sample 

has been shown to match well the peaks in the spectra of the received voltage. Good 

agreement has been found between the experiment and the theoretical prediction, even 

for wood samples, with their inherent variability of material properties. 
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GENERAL CONCLUSIONS 

Summary 

In this dissertation, we have presented results of a study of the propagation of ultra­

sonic guided waves in composite plates. We have focused our analysis and experiments 

on two important nondestructive evaluation and materials characterization problems 

related to composites: the interface bond condition and non-contact elastic properties 

evaluation. New experimental techniques and theoretical methods have been developed 

in our approach to solve and to better understand those problems. We have studied 

the physical principles behind the experiments and have developed numerical models for 

comparison. 

The study of the interface bond condition has been performed for a layered compos­

ite (glass-epoxy/balsa wood) known in industrial applications as the marine composite. 

The interest in this specific material comes from the fact that under certain loading con­

ditions the bonding between the glass-epoxy facesheet and balsa is altered, producing a 

closed disbond also known as "kissing-disbond" (KDB). We developed a novel technique 

to detect this particular type of defect, which conventional normal incidence ultrasonic 

methods have failed to find. Our approach has been to select a propagating guided wave 

mode specific only to the facesheet and nonexistent in the spectrum of the ideal bond 

marine composite as a whole. Once this mode is found, we employ a fixed pitch-catch 

reflection setup and perform a C-scan of the sample. The presence of a minimum in the 

received leaky Lamb wave spectrum is a clear indication of a KSD. We have successfully 
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detected KSD in carried-to-completion experiments involving various artificially created 

defects. We exploited the global transfer matrix method to obtain the predicted reflec­

tion coefficient and the received voltage for various interface conditions. Good agreement 

between theoretical predictions and experimental values has been shown. 

For non-contact elastic material properties evaluation, we have designed and devel­

oped methods for broadband focused measurements in air. The weak and inefficient 

generation of ultrasonic waves in air of the conventional transducers has motivated us 

to employ capacitive foil transducers in our experiments. To produce the desired wide 

angular range of the acoustic beam in air, we designed reflective parabolic mirrors. We 

have studied extensively, both theoretically and experimentally the characteristics of the 

air-coupled focused probes. Measurement of the acoustic pressure profile of the capaci­

tive foil transducers has been performed in both planar and focused configurations. We 

have shown that our system is adequate to generate and detect acoustic waves in air. 

Our computationally efficient received voltage model has been compared with conven­

tional models, and its numerical predictions have been found to be in good agreement 

with experimental results. 

The direct correlation of the elastic material properties with the modes of the prop­

agating wave in a plate has motivated us to develop a technique suitable for rapid non-

contact reconstruction of the guided waves spectra. We exploited our custom broadband 

focused air-coupled system and a synthetic aperture scan technique to produce, in one 

line scan with only one incident angle, an almost complete spectrum of the Rayleigh-

Lamb waves of various engineering materials subject to the bandwidth limitation of the 

transducers. We implemented a new pulse compression DSP method that, along with 

our fast data acquisition and processing capabilities, allowed us to perform rapid recon­

struction and evaluation of the guided waves spectra. When we tested our method on 

numerous materials, the results were found to be in good agreement with theoretical 

predictions. The theory developed in this work has been a valuable tool in assisting us 
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to interpret the experimental results of various experiments. 

Recommendations for future research 

Our study of interface bond condition was limited to marine composites. Even though 

the experiments with those particular composites have been challenging because of the 

complexity of the materials, and although the results have been conclusive, we feel that 

further research needs to be done to expand our technique for detection of KSD in other 

layered composites. Furthermore, this method potentially has application in the detec­

tion of the closed delamination inside a composite plate. In order to apply this technique 

to the control of the manufacturing process of composite laminates considerable effort 

is also needed. 

Efforts to obtain air-coupled ultrasonic measurements have been impeded by several 

experimental characteristics of our system, even though meaningful progress has been 

made. First, the duty cycle of the gated amplifier hindered the data acquisition speed of 

the measurements. The actual value highly recommended by the manufacturer, ten times 

less than the nominal value, has limited the experiments to an acquisition frequency of 

15Hz. Though the parabolic mirrors have produced the desired wide angular range, we 

feel that the design of a native focused electrostatic probe would significantly improve the 

data quality. Finally, a careful comparison of results of the two- and three-dimensional 

experiments would be beneficial in identifying of the influence of the focusing mirror on 

the features of the reconstructed spectra. 
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APPENDIX A REFLECTION COEFFICIENT FOR A 

LAYERED COMPOSITE 

The intent of this appendix is to show, in details, the derivation of the reflection 

coefficient of a layered elastic plate (i.e. glass-epoxy/balsa marine composite) in two 

experimental configurations: fluid loaded elastic layer/substrate system and immersed 

layered plate. The reason these two configurations were chosen is that both geometries 

are equally valid for modeling the marine composite; the numerical evaluation of the 

reflection coefficient of the marine composite does not show any significant difference 

when the results from both setups are compared. This is not surprising for the double-

layer marine composite plate with the thickness of its balsa layer much larger (1 in) 

than the glass-epoxy layer (0.08 in) and with the wood grains orientated perpendicular 

to the interface. Even though the marine composite sample is a multilayered plate, the 

thickness and acoustic damping of the balsa layer allows us to treat it as a layer/substrate 

system. 

The formulation presented here follows partially the approach establish by Nayfeh 

[77], [73]. The displacements and stresses for waves in unbounded elastic media are 

derived and expressed in the same fashion as the latter reference. The derivation of the 

reflection coefficient however is performed here using the Global Matrix approach rather 

that the Transfer Matrix prefered by Nayfeh. The Global Matrix Method was favored 

for being more stable in numerical evaluations of the reflection coefficients. An extensive 

study of these methods was done relatively recent by Lowe [66]. 
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Formal solution for wave propagation in an unbounded elastic medium 

The equation of motion for a generally anisotropic elastic medium is shown [73] to 

have the expression 

where it, are the projection of the displacement on the a^-axis with i = 1,2,3, p is 

the density, and Ciju is the stiffness tensor of the elastic medium [59]. To ease the 

mathematical manipulation of equations, a good convention is to write the tensor 

in matrix notation. The contracted index notation consists in reducing by half the 

number of indices by replacing the pairs as follows, 11 —> 1; 22 —» 2; 33 —* 3; 23 —> 

4; 13 —> 5; 12 —» 6. With this rule the stiffness tensor C^u is rewritten as a stiffness 

matrix f-> C/j with i, j, k,£ = 1, 2,3, and /, J = 1, 2...6. 

For a plane wave propagating in the plane xo — 0 under plane strain conditions, the 

motion is independent of z2 and the formal solutions for the displacements ut from the 

equation (A.l) are sought in the form 

(A.2) 

where Uj the displacement amplitude, i — in the imaginary unit, £ is the Xi-

projection of the wavevector, a is the unknown ratio of the wavevector projection on 

%3 and xi directions, and v is the phase velocity v = cu/Ç along xi. Application of 

the formal solution (A.2) to the equation of motion (A.l) for an elastic material with a 

monoclinic symmetry leads to three coupled equations 

(#)[/, = 0, (W = 1,2,3), (A.3) 

where the Kij matrix is symmetric and its elements are 

Kn — Cu + C'sr/t2 — pv2 A i2 = Cie + C^a2 

K-22 = Cô6 + C"i4tt2 — pV2 A'13 = (C13 + Css)» 

K33 = C55 + C^a2 — pv2 Ko's —: (C36 4- 645)0:. (A.4) 
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In order to have a noutrivial solution for the displacement amplitudes U\, U2 and C/3 

the determinant of matrix must vanish. The condition det([ATy])=0 yields a secular 

equation in a that can be solved for different values of the phase velocity v, 

of + A^o:^ + + A3 = 0. (A.5) 

The coefficients of the equation (A.5) are explicitly listed below, as a function of the 

stiffness, density and phase velocity 

Ai = [C11C33C44 — C13C44 + 2C13C36C45 — 2C13C44C55 + 2Ci3Cf5 — 2C16C33C45 

+ C33C55C66 — — (C33C44 + C33C55 + C44C55 — C%5)pv2]/A 

(A. 6a) 

Ag = [C11C33C66 — CuCgg — 2C11C36C45 + c11c44c55 — CnC4
2
5 — c2

scqq 

+ 2C13C16C36 + 2C13C16C45 — 2C13C55C66 — C2
6C33 + 2C16C36C55 

(A.6b) 

— (C11C33 + C11C44 — C2
3 — 2C13C55 — 2C16C45 + C33C66 — Cgg 

— 2C36C45 + C44C55 — C45 + C^C^)pv2 + (C33 + C44 + C^)p2v i\/A 

A3 — [C11C55C66 — C'IQC  ̂ — (C11C55 + CuCee — Cf6 + C^C^)pv2 

(A.6c) 
+ {C\\ + C55 + Cm)p2vA — /)3y6]/ A 

A = [C33C44C55 - (A.6d) 

Equation (A.5) has three distinct solutions for a2 thus the solutions for a are obtained 

in pairs as 

(%i = —(Kg, 0:3 - —CK4, 0:5 = —0:6, (-^-7) 

where 0:% and 0%, «3 and 0:4 and respectively 0:5 and o@ correspond to the first, second 

and third solution in a2. Because the determinant det(Kij) is zero we can solve the 

equation (A.3) only for two of the displacement amplitudes as function of the third. Let's 
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consider the ratios of the displacements for all values of aq, q—1.2...6 as Vq = U2q/U\q 

and Wq = U3q/Uiq or explicitly as 

^ - #12#23) (A.8&) 

Wq = (KuK-rs — K12 K13 ) / ( K12 K33 — K23-K13) (A.8b) 

Using the superposition method, the formal solution for the displacements is obtained 

as 
6 

(%,%2,%3) = (A.9) 
9=1 

and with the stress-strain relationship [59] 

1 „ ( dui du 

the stresses are obtained in the form 

" ' i ~ 2 C " [ d È + d t l ' -  1,2,3 <A10) 

K, T.») = X>i», D2„ (A.11) 
9=1 

The notation cr*3, in the last equation, replaces crjs/it; for j=l,2,3 for convenience. The 

coefficients Djq, j=l,2,3 from the stress expression are 

Dig — C13 + C^Wg + CszotWq, (A. 12a) 

D% = C%(o + W,) + C45«W„ (A.12b) 

D%q = C4s(a + Wq) + C^aWq. (A.12c) 

Because the solution of the equation (A.5) is obtained in pairs, the displacements and 

stresses amplitudes retain similar properties as 

M%i = -Wg W3 = -W4 W5 = (A. 13a) 

% = % = 1^ = ^ (A. 13b) 

Du — D12 Dis = -Dm -D15 — -Die (A. 13c) 

D-21 = — D'22 -D23 = —Du -D25 = —-D26 (A. 13d) 

Di\ — — D32 D33 = — D34 £>35 —- — D36 (A.13e) 
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Now, using the above properties, we can combine the displacements and stresses into an 

expanded matrix form that can be easily adapted to various boundary conditions. This 

expression (A. 14) is exploited later to derive the reflection coefficient. 

/ X u i 

u2 

%3 

33 

.* 

13 

* 

/ 

y 2̂3 y 

1 
\ 

V 

% 

-Ws 

As 

--D35 V 

U13E3 

U14E4 
(A.14) 

1 1 1 11 

Vi ^ % 

Wi -Wi W3 -W3 W5 

Du Du D\3 Dis Dis 

D21 —D21 D23 —D23 D25 

Dm —Du D33 — D33 D35 

with Eq = é^aqX3 for q=l,2...6. 

In the case of the elastic materials with a higher symmetry, i.e. orthotropic, for 

propagation directions that do not coincide with any of the principal axes directions, 

the formal solutions derived for the monoclinic material can be used as well. When 

the propagation is considered along one of the axes of symmetry some of the stiffnesses 

vanish and the monoclinic derivation cannot be applied. Let's consider now specifically 

the propagation to be along one of the axes of symmetry, namely xi for an orthotropic 

material. The equation of motion written explicitly defines two decoupled motions: one 

in the sagittal plane for longitudinal and vertically polarized shear (SV) wave assuming 

plane strain condition and the second for a horizontally polarized shear (SH) wave. The 

formal solution for SH waves, sought in the same form as (A.2), is given by 

2 

u2 — ^ ] UiqG iÇotqXs 

9=1 

2 

?23 = 
9=1 

(A. 15a) 

(A. 15b) 
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with 

«i  =  —«2 =  \ l^  n  (A.16a) 
y ^44 

Z?2i = D22 — 0:1644. (A. 16b) 

For a wave propagating in the sagittal plane, the formal solution is obtained as 

4 

(%, %s) = ]T(1, (A.17a) 
9=1 

4 
((733, F13) = (A.lTb) 

9=1 

The Kij matrix is reduced to a 2x2 matrix with the elements 

K\i = Cn + C5 5a2 — pv2, 

K12 = (C13 + Ctt)aL, (A.18) 

i^22 = C*55 + C33Q!2 — pV2 .  

The existence of a nontrivial solution produces the equation in a 

+ C = 0, (A. 19) 

with 

A = C33C55, 

S = (Cn — pv2)Css + (C55 — pv2)Ctt — (C13 + C55)2, 

C=(Cn-M(C55-^) .  

The equation (A. 19) admits two solution for a2 thus four in a with: oc\ = —a2 and 

«3 = —«4. The displacement amplitude ratio W, and the stress terms Dig, are 

Dig = C13 + CXqCszWg, (A.20b) 

Dzq — Ctt(aq + Wq) , (A.20c) 
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for q 1.4. As was shown before 

D'n = -D32 

Du = D\2 

Wi = -W2 

D33 — —D34 

D13 = Du 

Ws = -W4 (A.21&) 

(A.21b) 

(A.21c) 

because of the relationship that exists between the solutions of equation (A. 19). 

For any propagating direction in an isotropic material the motion is decoupled in 

sagittal plane motion and SH waves. The formal solution is then further simplified 

because of the higher symmetry but the same expressions, as that described for the 

case of the orthotropic material, can be used. The formal solution for the fluid media 

was found to have the same form as Nayfeh [73] ch. 5, pp. 80. The displacements and 

stresses can be expressed in a form similar to equation (A. 14) for all the cases mentioned. 

The matrix expression is useful for evaluating the reflection and transmission coefficients 

for various configurations. In the following paragraph two cases are shown explicitly: a 

fluid loaded orthotropic plate with a solid substrate, and a completely immersed plate 

with two monoclinic layers. 

Fluid loaded elastic layer with a solid substrate 

The system a fluid loaded elastic layer with a solid substrate is shown in fig. (1.8) 

The fluid is considered to be nonviscous. The boundary conditions for the fluid-layer 

interface (x3 = — d/2) are 

u l ( ~ d / 2 )  =  u \ ( — d / 2 ) ,  

a33(~d/2) = <J33(~~d/2), 

0 = crïz(—d/2), 

(A.22) 
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and for layer-substrate interface (2% = d/2) are 

"i((f/2) = %^(d/2), 

v%(d/2) = 7]2ul(d/2), 

^33^/2) ^ %^33W/2), 

^13(^/2) = %^i3((f/2). 

The superscript f , p  and respectively s denotes the fluid, the elastic layer and respectively 

the substrate. The coefficient % describes the bonding between the plate and substrate, 

taking values in the interval 0 < r/t < l,i = 1,4 (the actual values of % that were used in 

simulations are listed in the parameter files on the attached CD-ROM). A rigid bonding 

requires continuity of the displacements and stresses across the plate-substrate interface 

(7% = 1. i = 1,4). The case in which r/,: vanishes (r/,; = 0. % = 1. 4) represents the fluid-

plate-vacuum problem. The smooth interface can be modeled by setting t?2 = r?3 = 1 and 

r/i = r/4 = 0 and the rough interface with intermediate values for 77,;, i = 1,4. Using the 

appropriate formal solutions for fluid, plate and substrate, we can arrange the boundary 

conditions (A. 22) and (A. 23) into a system of seven equations where the unknown are the 

displacement amplitudes in the layer U^, j = 1,4, the reflection coefficient R in the fluid, 

the longitudinal wave transmission coefficient T& and the vertical shear transmission 

coefficient Tsv in the substrate. 

If the amplitude of the incident wave in the fluid, U { ,  is arbitrarily chosen to be 

unity for convenience, the amplitude of the reflected wave back in the fluid, U(, can be 

identify with the reflection coefficient R. Also the amplitudes of the waves propagating 

into the solid substrate will be obtained as U{ = TL. (7| = Tsv, and C/| = f/J = 0. The 

last two amplitudes vanish because there are no incoming waves from the substrate to 

the layer. After arranging the boundary equations into a system of equations we obtain 

a 9 by 7 matrix but two of the columns can be eliminated because they are multiplied 

with the vanishing amplitudes in the solid substrate namely f7| and [7|. Thus the matrix 

of the system of equations is reduced to a size of 7x7 as shown below. 
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wfël -wfej 0 0 f % \ 
0 0 % pyt,: 

0 0 0 % 0 

Ei $T Es Si 0 m m % = 0 

-wfsT 0 r?2 wf r 0 
0 tl 0 
0 mD§3 . \ Tsv I 0 ) 

= Ei = e<«3d/2^ ^ — g-iCcesd/2 Using the n 

(A.24) 

(A.25) 

El + El = + <r<aid/2 = 2cos ((aid/2) = 2cosi, 

Ei — Ei — e<aid/2 _ g-*faid/2 = 2i sin (Ça-id/2) = 2i sini, 

E3 + Eg = _|_ g-^asd/2 _ g COS (^CK3(f/2) = 2 COS3, 

Ea - ̂  = = 2* sin (^3^/2) = 2% sing, 

we multiply with —1 the 2nd and 4th column and we add them to the 1st respectively 

3rd column followed by the addition of the initial 1st and 3rd column to the 2nd and 

respectively 4th column. These operations yield 

2Wf cosi -2Wfsmi 2M^COS3 —2 iWl sin3 Ctf 0 0 

—2iD\i sini 2Dh cosi —2iD\z sin3 2D^3 COS3 0 0 

2£>3! COSi —2iDh sinj 22% CO83 —2% D33 sin3 0 0 0 

2 i sini 2cosi 2 i sin3 2COS3 0 Vi m 

2Wf cosi 2^81111 2M^COS3 2%M^sm3 0 %^3 

2iDpn sini 2£>f1 cosi 2%D\Z sin3 2D[3 COS3 0 

2Dh cosi 2iD%i sin. 2Dga COS3 to
 

1
 

0 %^31 774-D33 
(A.26) 

We factor out the coefficient 2 from first 4 columns and -1 from the 2nd row and add the 

4th, 5th and 6th rows to the 1st, 2nd and respectively 3rd rows and subsequently subtract 
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the l'*, 2"^ and 3^ rows from 4^, 5^^ and respectively 6*^ rows. 

Wfcosi 0 Mucosa 0 af 

iD\x sin i 0 iD\z sing 0 %Dfl %% 

Dgicosi 0 DggCOSs 0 0 %^33 

2 sini COSi zsing COS3 0 2% 2l?i 

0 sini 0 Osiris -Oif  %^3 

0 D{x COSi 0 ^3 COS3 %% 

0 sini 0 zDgg sins 0 ÏÏ4D33 

(A.27) 

We divide the 1st and 3rd columns with cosj respectively cos3 and similarly the 2nd and 

4th columns with siri; respectively sin3. The rearranged determinant is 

1 0 0 

^3^3 0 0 

0 % ^3 0 0 Tli ̂ 33 

0 m iTs Cl c3 2% 2??i 

i 0 0 —irj2Wi 

0 0 

0 0 0 -̂ 4^33 

(A.28) 

With the notation: F = pfV2/aj, W\ = , Ws = Dn = —Dig = 

—ir)zD{3, D3i = 774£>3i, D33 = %% and Q — 2% the determinant becomes 

1 0 0 Wi ^3 

-iF 0 0 —%D\\ —iDis 

0 0 0 D31 D33 

0 iTi m Cl c3 Q Q 

i 0 0 M? -Wi 

-F 0 0 Wi Dn Dys 

0 0 0 ^3 —iD31 —^33 

(A.29) 
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Using Cramer's rule [42], the reflection coefficient can be easily derived as 

d _ Ar _ (Ai + iA5) - F(A6 + iA2) , , 

A (Ai + zA5) + F(A6 + iA2)' ^ ^ 

with the terms Ai; (i = 1,2,5,6) the determinants of 6x6 matrices. The exact expres­

sions of these parameters are obtained using the Maple program, RClsub.mws included 

on the attached CD-ROM. If the notations Aps = (A% + iA5) and Yps = (A6 + iA2) are 

used the expression of the reflection coefficient reduces to the familiar form (1.8) 

R = (A.31) 
^P$ I Xps 

with the terms Apg = (A% + iA5) and Yps = (A6 + iA2) given by 

Ap, = i [A1D33 - D31A3] {A(WTC3 - %%) + (DggTi - 2%%) 

(:y%C3 - - 7^3% - % - wr^)+ 

+(%?% - - QC3(Dfi - - 1V%)+ 

+(WT% - M%7i)%Ci - ̂ Q)}+ 

+% [W3D11 _ ^iDis] {A(Z%Ci - Z%Q) + ̂ (D^Ti - Dg^)}+ 

+2 [W3D31 - ̂1^33] {(ACiQ - 27171,)% - %}+ 

+ [(Dn - Dia)Q] {A(WTZ% - %%) - (WfZ% -

[(D31 - Dg3)Q] - %%(%)+ 

+(WfDf3T3-W|'Dfiri)2}+ 

+2% [(Wi - Ws)Q] 

(A.32) 
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- 2 [D11D33 - D31D13] - 2^^) [Wr(?3 - C3) - M^(Ti - Ci)]}+ 

+2 [T^iDis - M%i] [(^(Tg - Q) - D^(Ti - <%)]}+ 

+t [W3D31 - W1D33] {7iT3% - ̂ 3)%^ -

+(W?Q - WfC3)A + (WT%?3 - %%Ti)(Z%Ci - ̂ Q)-

-(Dg^ - %)%%% -

-QC3(Z%MT - - %) - (W?Ï3 -

+2i [(Dn - WQ] {(%^f - ̂31^3 )}+ 

+[(% - ̂33)0] {(wr%^ - ̂ z%Ti)%wr - z%wn+ 

+2(D^Wf - - ̂ ^Q)}+ 

+ [m - ̂3)0] - (%MT - Dg^)^} 

(A.33) 

In fig. A.l is presented the numerical evaluation of the reflection coefficient for the 

water loaded glass-epoxy/balsa system with ideal bonding. The geometrical setup is 

shown in fig. 1.8. The thickness of the glass-epoxy layer is 0.08 in. The wood grains 

are perpendicular to the interface. The reflection coefficient is evaluated for 500x500 

frequency-wavenumber values equally spaced in the range 0-2 MHz and respectively 0 -

5 rnrrT1. The red color represents the lowest amplitude while the dark blue the highest 

value («1). The minima in the reflection coefficient are indications of a propagating 

guided wave mode. With the same setup parameters the reflection coefficient is evaluated 

for the KDB case and presented in fig. A.2. The net difference between the spectra of 

the same composite in the case of a good bond and a KDB is shown in fig. A.3. The 

red color shows here the maxima in the net difference between the two spectra. It can 

be seen that, the maxima is concentrated around a phase-match angle of 15° ± 3°. The 

same result was observed experimentally and exploited to distinguish KDB areas in the 

C-Scan of the sample. 
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Wavenumber k (mm " )̂ 

Figure A.l Numerical evaluation of the reflection coefficient for a water 
loaded glass-epoxy/balsa system. The bonding between top 
layer and the balsa substrate is considered ideal. 

U-Û.5 

Wavenumber k (mm " )̂ 

Figure A.2 Numerical evaluation of the reflection coefficient for a water 
loaded glass-epoxy/balsa system for the KDB case. All param­
eters are kept constant from the previous case except for the 
boundary conditions. 
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Wavenumber k (mm' ) 

Figure A.3 The difference in the numerical evaluation of the reflection co­
efficient between the good bond and KDB cases. The top hor­
izontal and right vertical axes show the phase-match angle in 
water. The largest difference is concentrated at 15° ± 3°. For a 
frequency of 1MHz the maximum is located at 17° which it is 
in good agreement with the experiment. 
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Completely immersed double layer elastic plate 

The fluid loaded multilayer elastic plate is shown in fig. (A. 4). Both the upper 

(superscript u) and lower (superscript d) fluids are considered to be nonviscous. The 

thickness of the first layer (A) is dA and of the second layer (B) is ds- There are three 

boundary conditions for each fluid-solid interface and four for the solid-solid interlayer 

bond, ten equations in total. 

The boundary conditions for the upper fluid-layer A interface (a% = — d/i) are 

f33(-<W = 0%:(-<W, (A.34) 

0 = 0*13 ( ^A) i 

for interlayer interface (x^ = 0) are 

%i(0) = %^î(o), 

uî(fy — %tt3(0), 

^&(0)= %^33(0), 

oTs(o)= ^4^13(0) i 

and for the layer B - lower  flu id  interface (x3 = ds) are 

u3 (ds) = u3 (dis), 

^(dg) = o-^(dg), (A.36) 

&13 (ds) — 0. 

As we done in the previous section, the amplitude of the incident wave in fluid in 

arbitrarily considered to be unity. U[l = 1. The result of this convenient assumption 

is that the amplitude of the reflected respectively transmitted wave into fluid can be 

identified with the reflection respectively transmission coefficient, 11% = R and Uf = T. 

The amplitude Uf = 0 because there is no incoming wave from the lower fluid. The 

boundary conditions can be arranged in a system of nine equation with nine unknowns. 

(A.35) 
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The system of equation can then be solved for any of the variables: the reflection and 

transmission coefficients and eight displacement amplitudes, four for each solid layer. 

The resulting matrix is given by 

Plate A 

Plate B 

Fluid (C##) 

Figure A.4 Scattering from a fluid loaded two layers plate. The x\ axis is 
parallel to the interfaces and located at the boundary between 
plates. The thicknesses of the plates are cZ.4 for plate A and re­
spectively dy for plate B. Two different fluids can be considered 
for both top and bottom interfaces. 

-W?Ef WfËJ -W$E% "t 
0 0 0 0 0 

VïaW ^13^3 0 0 0 0 0 

-D% tE% 0 0 0 0 0 0 

Bf Bf Eg w 0 mËf 0 

W?Ef -WfËf -WgÊJ 0 V2w£Ëf 0 

D^B* D i i&i D<tzE% VïsM 0 0 

DgiEf ~DfxSf -D&ËJ 0 i,4oSiS{ — î)4r>33i?| 0 

0 0 0 0 0 4 

0 0 0 0 0 DhnEb i ~p l
fv2 

0 0 0 0 0 VÎlEÏ 0 

(A.37) 
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Following the same procedure from the previous section the determinant is simplified to 

wf 772 W$ 0 0 0 0 1 1 

-77 sDb
lsT% 0 0 0 0 -ÏU — t(î?3/ï?2)-L 

"W-Dgl 0 0 0 0 0 0 

» Tf -ill T} -iniTa Of <?S 771 C\ mc$ 0 0 

0 0 m iW? iW$ 0 0 -1 1 

0 0 ivsDisTi -DhC} -DÎ3C3 0 0 u ~(»73/r?2)£ 

0 0 t?4^33 iD§ 1 *£>33 0 0 0 0 

0 0 0 0 w? w# -V2 W* -Î73W| i i 

0 0 0 0 DîlC? D<{3C% -U -(•03/ri2)L 

0 0 0 0 »Sl D33 -^4-^33 0 0 
(A.38) 

with L and U are the fluids contributions and are given by the equations (A. 39) and 

respectively (A.40). 

for the lower fluid and 

L — 

U = 

a' ' 

ay 

Using Cramer's rule the reflection coefficient is then derived as 

(A.39) 

(A.40) 

p _  Ar __ [Mi — L(M 2  + M 3 )]  — U [(M 2  — Ms) — LM4] 

' IT " [Ml - &(M2 + Ms)] + (7 [(Mg - Ms) - IM4] ' 
(A.41) 

The terms Mi,  ( i  =  1..4), are sums of 7x7 determinants. Both layers influence is coupled 

for each of the M*, (i = 1..4) determinants. The exact expressions of these parameters are 

obtained using Maple. The Maple program, RCImmersedMultilayer.mws, that produces 

the exact expression of the reflected coefficient is included on the attached CD-ROM. 
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Boundary conditions for various types of interface condition 

To illustrate the interface conditions employed in the stress-jump model [73] we 

consider the planar boundary between two distinct media: upper medium U (superscript 

u) and bottom medium S (superscript b). Without losing the generality we consider the 

interface to coincide with the plane (x, y) with medium U lying in the halfspace z < 0 

a n d  m e d i u m  S  i n  t h e  h a l f s p a c e  z  > 0 .  

The following cases are commonly used throughout this work: 

• Welded interface or ideal rigid bonding 

— continuity of the displacement and stress components 

^ (A.42) 
= 0j3, J — 1,2, 3. 

• Smooth interface 

continuity only of the normal displacement and stress components 

shear stress components are zero for both media 

z3 ~ m3> 

ru _ _& 
'33 — °33 

__ ^6 _ 
a13 ~ <7i3 — °"23 = ^23 = 0- (A.43) 

• Rough interface 

- continuity of the normal displacement and stress components 

— partial transmission of shear stress 
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u3 — u3' 

a-33 — ^33 

< = %%1, 

U '=  (A.44) 
<3= %<4), 

a23 = ^40*231 

with the parameter 0 < % < 0, i = 1...4. 

Stress-free interface (vacuum) 

- all stress components are vanishing 

<4 = 4, * = 1,2,3.. (A.45) 



www.manaraa.com

173 

APPENDIX B ADDITIONAL INFORMATION ON THE 

COMPUTER PROGRAMS USED IN THE NUMERICAL 

EVALUATIONS OF THE ANALYTICAL MODELS 

This appendix provides additional information on the various programs used in the 

thesis for the numerical prediction of the theoretical models. The programs can be 

found on the attached CD-ROM in the folder [drive letter]: \Programs. All programs, 

which were used in the numerical predictions of the model, are written in FORTRAN 

and some of them require the installation of the IMSL FORTRAN Math library. This 

library is protected by the copyright laws and it cannot be included on the disk. To 

acquire a license or find out additional information concerning this math library please 

visit http://www.vni.com/products/inisl/. The programs are organized in the order of 

their usage in the thesis. 

Reflection from the glass-epoxy layer-balsa substrate 

RCMarineComposite.f90 

This program can be found in the folder ...\Programs \Reflection \RCMarineComposite. 

It is used for calculation of the reflection coefficient or received signal from the glass-

epoxy layer-balsa substrate system as a function of the wavenumber and frequency. The 

bond condition between the layer and substrate is accounted for with the help of a simple 

stress-jump model, according to the expression developed in Appendix A. 

The input parameters are divided in two categories: the transducer characteris­

http://www.vni.com/products/inisl/
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tics and experimental geometry stored in the input file T DATAjcl.dat and the elastic 

medium properties stored in the input file MDATA.vl.dat. The numerical result is 

saved in three separate files as the absolute, real and respectively the imaginary values 

of the reflection coefficient or received voltage. The input parameters required by this 

program are the following 

V_R: the data output switch (1-voltage, 2-reflection coefficient), 

tS: the transmitter type (1-planar, 2-focused), 

aS: the transmitter radius (m), 

tS: the transmitter focal length (m), 

alphaS: the transmitter incident angle (deg.), 

tR: the receiver type (1-planar, 2-focused), 

aR: the receiver radius (m), 

tR: the receiver focal length (m), 

alphaR: the receiver incident angle (deg.), 

fmin: the start value of the frequency (MHz), 

fstep: the frequency step size (MHz), 

fN: the number of frequency steps, 

kmin: the start value of the wavenumber (m), 

kstep: the wavenumber step size (m), 

kN: the number of wavenumber steps, 

Density?: the density of the fluid (kg/m3), 

Velocity F: the wave velocity in the fluid (m/s), 

rho: the density of the layer (kg/m3), 

d: the thickness of the layer (m), 
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C: the elastic stiffness of the layer (MPa), 

rhoS: the density of the substrate (kg/m3), 

CS: the elastic stiffness of the substrate (MPa). 

The name of the output files can be changed by modifying the default name in the 

MDATA-vl.dat file. 

Reflection coefficient calculation for a layered substrate 

RClsub.mws 

This program can be found in the folder ...\Programs \Maple and shows the detailed 

calculation of the reflection coefficient for the glass-epoxy layer-balsa substrate system 

according to the expressions developed in Appendix A. Requires Maple 7.0 or later 

versions. 

Reflection from the glass-epoxy balsa layered plate 

RCImmersedMultilayer.fDO 

This program can be found in the folder ...^Programs \Reflection \RCImmersedMultilayer. 

It is used for calculation of the reflection coefficient or received signal from the two lay­

ers plate glass-epoxy/balsa as a function of the wavenumber and frequency. The bond 

condition between the layer and substrate is accounted for with the help of a simple 

stress-jump model, according to the expression developed in Appendix A. 

The input parameters are divided in two categories: the transducer characteris­

tics and experimental geometry stored in the input file TDATAjv2.dat and the elastic 

medium properties stored in the input file MDATAjv2.dat. The numerical result is 

saved in three separate files as the absolute, real and respectively the imaginary values 

of the reflection coefficient or received voltage. The input parameters required by this 

program are the same as those of the RCMariileComposite. f90 plus the thickness of the 
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balsa plate dS. The name of the output files can be changed by modifying the default 

name in the MDATAjv2.dat file. 

Reflection coefficient calculation for a layered plate glass-epoxy/balsa 

RCImmersedM ulti layer. mws 

This program can be found in the folder ...\Programs \Maple and shows the detailed 

calculation of the reflection coefficient for the two layers plate glass-epoxy/balsa accord­

ing to the expressions developed in Appendix A. Requires Maple 7.0 or later versions. 

Pressure field of a planar or focused Gaussian transducer 

GaussianDirectivity_SCTP.f90 

This program can be found in the folder ...^Programs \Directivity\SCTP_VOLTAGE. 

It is used for calculation of the directivity pattern or received voltage from a planar or 

focused transducer as a function of the wavenumber and frequency. The program follows 

the expression developed in the chapter 2. 

The input parameters are stored in the input file INPUTDATAjvl.dat and are the 

following 

T_R: the experimental geometry switch (1-transmission, 2-reflection) 

D_M: the data output switch (1-directivity, 2-voltage), 

Density? : the density of the fluid (kg/m3), 

Velocity?: the wave velocity in the fluid (m/s), 

rho: the density of the layer (kg/m3), 

d: the thickness of the layer (m), 

C: the elastic stiffness of the layer (MPa), 
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tS: the transmitter type (1-planar, 2-focused), 

aS: the transmitter radius (m), 

tS: the transmitter focal length (m), 

alphaS: the transmitter incident angle (deg.), 

tR: the receiver type (1-planar, 2-focused), 

aR: the receiver radius (m), 

tR: the receiver focal length (m), 

alphaR: the receiver incident angle (deg.), 

fmin: the start value of the frequency (MHz), 

fstep: the frequency step size (MHz), 

fN: the number of frequency steps, 

kmin: the start value of the wavenumber (m), 

kstep: the wavenumber step size (m), 

kN: the number of wavenumber steps, 

The numerical result is saved in three separate files as the absolute, real and respectively 

the imaginary values. The name of the output files can be changed by modifying the 

default names in the last six lines of the INPUTDATAjul.dat file. 

Pressure field of a planar or focused Gaussian transducer 

GaussianDirec.tivityJVICTP.f90 

This program can be found in the folder ...\Programs \Directivity\MCTP_VOLTAGE 

and it is used for calculation of the directivity pattern or received voltage from a planar 

or focused transducer as a function of the wavenumber and frequency using multiple 

OTPs. The input parameters are stored in the input file INPUTDATAjo2.dat and are 

similar to the GaussianDirectivity_SCTP.f90 program. In addition to those parameters 
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N is the number of CTPs and A„ and Bn are the coefficients of the complex points 

according to Wen [97]. 

Received voltage from a plate in air-coupled transmission 

Voltage_KF_CTP.f90 

This program can be found in the folder ...\Programs \Transmission\AirCoupledU 

and it is used for calculation of the received voltage from a planar or focused transducer 

as a function of the wavenumber and frequency in a pitch-catch transmission setup in 

air. The input parameters are stored in the input file InputDATA\MaterialName\.dat 

and are similar to the GaussianDirectivity_SCTP.f90 program. 
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